Lecture 6

* Switch statement
* Functions

* Standard 1/O

* Namespaces

* Variable Scope

12705 1

Switch Statement

* Multi-way switch

* switch (<integer-expr>) {
case <constant>:
<statements>
break;

default:
<statements>
break;

127/05 2

Functions

* Modular programming
- Breaking down tasks into smaller sub-tasks
* Increases readability

* Eases debugging and program maintenance
because program pieces can be tested
individually

* Defining interfaces makes programming in
teams efficient

12705 3

Function Examples

12705 4

Function Declaration Function Definition

int lem(int a, int b);
* Functions must be defined (possibly in a separate source
file) if they are used

doubl e pow(doubl e a, double b); . .
. * Syntax: <type> <name> (<param-list>) { <statements> }
Functions must be declared before they are used

voi d process_input();

¢ Exit void functions with r et ur n;
Syntax: <type> <function-name> (<param-list>); where « Values are returned by r et urn <exprs:

<function-name> :'= <ident> (type of expression must match function return type)

<param-list> =g | <list> (€ = empty word, | means or) * Parameters are treated as local variables

<list> ::= <type> <_'de_m> _l <type><ident>, <I'_SI> _ ¢ In C++, function definitions cannot be nested!
return type void indicates that nothing is returned

empty parameter list: no parameters are used

12705 5 127/05 6
Some (Library) Functions Standard Input & Output
int main(int argc, char *argv[]); - execution starts here ﬁ'srﬁg“ﬁgn:'sgzzz;eg{‘z
void exit(int err); - exit execution with an error code int main() {
(0 usually indicates success) int n:
int abs(int x); - compute the absolute value of x el
double sin(double x); - compute the sine of x . T (2] ==
double floor(double x); - round x down to nearest integer ¥

* Input via input-stream cin (“standard input”)
To learn more about standard library functions consult the system

header files located in /usr/include and $GCCHOME/include/c++ - Syntax: cin >> <variable> >> ... >> <variable>;
in conjunction with the UNIX man command (use “which g++” to find ; _ “ ”
o o (Gl * Output via output-stream cout (“standard output”)
- Syntax: cout << <expr> << ... << <expr>;
E.g. less /usrfinclude/math.h
man floor * cin/cout defined in standard header file <iostream>

127p5 7 127/05 8

Standard Error Stream

_ Two Example Files
* Another predefined output stream: cerr

* Used for error messages * copy.c copy input to output
* Same output operator: << e calc.c add pairs of numbers
* Qutput is also sent to the console * in material/06

* However, it is not redirected when using > or |

* Example:

cerr << "division by zero” << endl; exit(10);

On my web-page you can find a link to the iostream documentation
which lists many useful functions. For instance cin.get() which reads
one byte from the standard input (useful for assignment 1)

12705 9 127/05 10

Namespaces
* You can create your own namespace. E.g.

- namespace foo { void bar(); }
- call with: foo::bar() or
- using namespace foo; bar();

* using namespace X; * No namespace: symbols are put in global

- introduces all symbols of namespace X into the namespace (empty prefix)
currenct context (no need for qualification)

- e.g. using namespace std; -> introduces cin,cout,...

* using X::y;
- symbol y is introduced as being an abbrevation for X::y
- e.g. using std::iostream; -> introduces just iostream

* Symbol collections which are qualified by name
- types, variables, functions
* Avoids name conflicts

- e.g. ustrlen(s) // defined in <cstring> or <string.h>

12705 11 127/05 12

Example
* Here is how to create your own namespace:

12705 13

Variable Scope

* Variables (and constants) have a lifespan
- from the time they are created
- until they are no longer used

* Local variables are declared within
statement blocks enclosed by { }

* They are unknown outside the block

* Memory for them is allocated on the system
stack and not automatically initialized

* When functions are exited, memory for local
variables is released

127/05 14

Local Variable Scope Examples

15

Memory Allocation in Functions
Using a stack data structure

Stackpointer (SP) points to next available byte
in memory

When a function is called the return address is
first pushed onto the stack (e.g. store address
at the location SP points to, add 4 to SP on 32
bit machines)

Make room for local variables by increasing SP
by a constant

Upon function exit, decrease SP and jump to
stored return address
127/05 16

