lllustration

Lecture 5

* Operators continued
* Expressions
* Flow control

3105 1 3/105 2

Shift Operations Expressions

* Built from variables, constants, operators, and ()
* infix notation

* () used for explicit evaluation order, must be
balanced

* Operators have fixed arity, associativity &
precedence

3/105 3 3/105 4

Conditional Expressions

* expl ? exp2: exp3

* expl is evaluated first. If it is true, then exp2

is evaluated and this is the value of the
conditional expression

* if not, exp3 is the value of the expression

3/105 5

Comma Operator

* Evaluate many expressions in one statement
* Syntax: <exp_1>, <exp_2>, .. <exp_n>
* Semantics:

- expression evaluated from left to right
- value of last expression is returned
-, has lowest operator precedence of all

3/1/05 6

Assignment Operators

* Set/change value of variable
e Syntax: <variable> = <expression> ;

*i OP= c equivalentto i =i OPc,where

OPisoneof + - * /| %<< >> & " |

3105 7

Type Conversions

* Types of variable and expression must be compatible
* Value is converted to type of variable

3/105 8

Associativity and Precedence

rtl =right to left, Itr = left to right, unary +-* higher precedence than binary ops.

3/105 9

Precedence Examples

3/1/05 10

Program Flow Control

* if-then-else
* goto

* loops

* functions

3/1/05 11

If-Statements

* if (<expr>) <statement>
* if (<expr>) <then-statement> else <else-statement>
* if (<expr>) <statement-1> else if (<expr>) <statement-2>

* <statement> : any statement, including statement list
endosed in {} and additional if-statements!

e <expr> is evaluated; if true, <then-statement> is executed

otherwise - if there is an <else-statement> it is executed
3/1/05 12

Goto Statement Loops

* Repeat execution of statements until a condition is
met

* Three forms:
- while (<test-expr>) <statement>

- do <statement> while (<test-expr>) ;

* Control flow resumes at a specific location - for (<init>; <test-expr>; <update>) <statement>
marked by a label (syntax: <identifier>:)

* Use rarely! goto code is hard to understand
and maintain ~ "Spaghetti code”

3/1/05 13 3/1/05 14
while Loop do Loop
* while (<test-expr>) <statement> * do <statement> while <test-expr> ;
* while expression evaluates to true execute * first execute statement and loop if
statement expression evaluates to true

3/1/05 15 3/1/05 16

for Loop

* for (<init> ; <test-expr> ; <update>) <statement>

is equivalent to:

<init> ;

while (<test-expr>) { <statement>; <update>; }

3/105 17

Loop Control

* break; exits loop immediately
* continue; skips loop body

In for loops, continue resumes with the update
3/1/05 18

