Practical Programming Methodology
(CMPUT-201)

Michael Buro

Lecture 16

@ C++ Class Inheritance

@ Assignments

@ ctor, dtor, cctor, assignment op. and Inheritance
@ Virtual Functions

e, 1 / 15 |
@ Sub-class/derived class specializes
super-class/base-class

@ Usually models "is-a" relationship.
"a Rectangle is a Shape”
"a Square is a Shape”
"an Ellipse is a Shape”
"a Circle is a Shape”

Eg.

@ Type hierarchy
Shape <---+--- Rectangle

+--- Square
+--- Ellipse
+-—- Circle

Object Oriented Programming Paradigm

Derive new class from existing base-class(es)

Inherits data and function members from base-
class(es)

» Code/data reuse

» Code adaption (make use of base-class impl.)

Single inheritance (inherit from one base-class)

Multiple inheritance
(more than one base-class, not in Java/C#!)

class Shape { // base-class

public:
int color; // all shapes have a color
float area() comnst { return O; } // and area, too

};

class Rectangle :
public:
Rectangle(int x1_, int xr_, int yt_, int yb_) :
x1(x1.), xr(xr_), yt(yt_), yb(yb_) { }

public Shape {

float area() const { return (xr-x1)*(yb-yt); } // overrides Shape::area()

private:
int x1, xr, yt, yb; // describes Rectangle (left,right,top,bottom)
// also inherits color

};

class Circle
public:
Circle(int x_, int y_, int r_.) : x(x.), y(y), r(x.) { }
float area() const { return r * r * PI; } // overrides Shape::area()

: public Shape {

private:
int x, y, r; // describes a Circle, also inherits color

};

Inheritance Types
public:
int a; // visible to all: users of X,
@ Derived class inherits all data and function members void fa(); // X itself, and derived classes
protected:
from t)ase—class(es) int b; // visible to derived classes & X,
@ Access permissions depend on qualifiers Y°ii 0O; // but not to users of class X!
prlva e.:
) int c; // only visible to member functions
@ class Y : publicX { ... } void £cO); /] of X
» Y"isan" X }
» Sub-class Y can access public and protected members of
X, cannot access private members of X class Y : public X // Y "is an" X int main() {
{ X x;
) void foo() { Yy
® class Y : protectedX { ... } a=0; £a0); // OK x.a = 0; // OK
» Y "is implemented in terms of" X b =0; fb(); // OK y.a =0; // OK
» public members of X become protected in Y c =0; fc(; // NOT OK! x.b = 0; // NOT OK
} x.c = 0; // NOT OK
}; }
Lecture 16 Gt Classnheritance 5/18||lecwelosCht Classuhertonce s
class Y : public X {...} class Y : public X {...};
))) X a; Y b;
@ Y inherits data and function members from X ’ ’
@ Public inheritance: "is-a" relationship a=>b; // 0K - but slicing!

@ public and protected X members visible in Y @ assignment operator is called with reference to b

@ X-parts of b are copied to a, Y parts are not

X a; Y b;
@ Assignments: a = b; or b = a; meaningful? b = a; // not OK
@ How to implement Y assignment operator and copy @ Y can contain more data than X
constructor? @ How to fill the rest?
X *pa; Y *pb;

Y assignment op. and copy constructor can make use of
X operators
R A AT —————=.7e

@ Assignments: pa = pb; or pb = pa; meaningful?

class Y : public X {...};
X *pa; Y *pb;
pa = pb; // OK

» pa now points to b, or *pb respectively
» information about Y is not available when accessing *pa

// not OK

@ pa = &b; or

@ pb = &a; or pb = pa;
» *pb is object of type Y
» again, where would the additional data come from?

struct X {
int x;
XO {x=0;1%
}
struct Y : public X {
int y;
YO {y=0;7%
Y(const Y &a) : X(a) { // X copy constructor, copy X-part
y = a.y; // copy Y-part
}

Y &operator=(const Y &a) {

X::operator=(a); // X assignment operator, copy X-part

y = a.y; // copy Y-part
return *this;
}
}
X a, *pa;
Y b;
a = b; // a.x = b.x; b.y not copied (object "slicing")
pa = &b; // OK, *pa is object of type X. Y-parts invisible

class X {
public:

X(int a_=0) { ... }
};

class Y : public X {
public:

YO { /¥ X0 is called here */ ... }

Y(@int b_) : X(_) { ... } // explicit X(int) call
3

@ Base-class constructors, copy constructors, and
assignment operators are not inherited!

@ Derived class constructor calls the base-class
constructor first to initialize base-class members

@ If ommitted, the default derived class constructor is
the base-class constructor

struct X { // struct = class ... public:
int *p;
XO { p = new int[100]; }
"X { delete [] p; }

};

struct Y : public X {
int *q;
YO { /#X() called herex*/ q = new int[200]; }
“Y(O{ delete [] q; /* "X() called herex/ }

3

@ Are called in reverse order of constructor calls

@ Derived class destructor “Y () calls base-class
destructor "X () at the end

@ “Y() only deals with resources allocated in Y!
~“X () takes care of the rest

. public:
@ Class Graphics contains a list of pointers to objects void draw() { // draw all objects
to be drawn: Circles, Rectangles, ... for (int i=0; i <[n]_0bj8: ++i) {
. Shape *p = objsli];
@ 1st solution: Objects contain an id to identify type Swiich(g_nypje i) {
case CIRCLE:

clas; Shape { static_cast<Circlex*>(p)->draw(screen);
public: break;

int type_id; case RECTANGLE:

'1nt color; static_cast<Rectangle*>(p)->draw(screen);
¥ break;

}
enum { CIRCLE, RECTANGLE, TRIANGLE, ... }; }
. . +

cléss C1r01? : public Shape { Shape **objs; // array of pointers to Shapes

1n? ?,y,r, int n_objs; // number of objects
public: Screen *screen;

Circle() { x=y=r=0; type_id = CIRCLE; } 3.

void draw(Screen *s) const { ... } ’

Problems: slow, need to change code when adding new shapes, hard to maintain

}
|Lecture 16 : Virtual Functions 13/18 | |lectwels: Virwal Fonctions o /s

class Shape { // abstract base class

public:
F b | . t t b f t- int color;
° Or a Dase-cClass pom €r, execute mempber Tunctions virtual void draw(Screen *s) const = 0; //abstract
in the current ObjeCt context: }; // = 0: derived classes must implement function
* . — 2 . — .
Shape p’_p] n?W Cer}e’ p >draw() ; class Circle : public Shape {
Would be nice if this calls Circle: :draw ! public:
Circle() {x=y=1r=0; }
. . . . id d S * t R impl t
@ Polymorphism: same function name, different action void draw(Screen *s) const { } // implements
// virtual function
. . “ " . private:
@ Requires that objects “know” their type! int x,y,7;
}

@ Solution: Virtual Functions
@ Second solution: virtual function draw
@ Keyword virtual indicates that the function in

sub-classes is accessible via base-class ﬁointers

class Graphics {

Publ?zid 14 11 obiect @ New data-member is added to class variables:
Vo1l raw raw a objects . . .
for (int i=0; i < m_objs; ++i) { pointer to V|rtua|.funct|on .table (VFTP)
objs[i]->draw(screen) ; @ One virtual function table is created for each class
b @ The virtual function table contains addresses of
gh o /) e s - virtual functions
k3 :
iape Tron)s:s array of pointers to Shapes @ Two stage access: Shape *p; p->draw(screen);
int n_objs; // number of objects
Screen *screen; replaced by (*p->VFTP[C_DRAW]) (p, screen);
+;
Circle x; Virtual Function Table
for Circle
e No type_id, no switch. Faster and easyto || | ———cc-eem o Circle::draw
maintain |_VFTP___|-------——-- >|____draw_____ |-=> —-——-
e . | _color__| | __ I -——-
@ Type of *xobjs[i] known at runtime ~» the correct | . —
draw function can be called. HOW?

