
Practical Programming Methodology
(CMPUT-201)

Michael Buro

Lecture 15

C++ Class Definition
Access Restrictions
Member Functions
Interface and Implementation
Constructors, Destructor
Copy Constructor, Assignment Operator

Lecture 15 : Overview 1 / 18

Class Definition

class Pair {
public: // access qualifier

// data members
int x, y;

// function members
void print(ostream &os) {
os << ’(’ << x << ’,’ << y << ’)’;

}
void init() { x = y = 0; }

};

Pair p; // define class variable
p.init(); p.print(cout); // call member functions

Class bodies consist of declarations and definitions of
data and function members

Lecture 15 : C++ Class Definition 2 / 18

Access Restrictions

public: the data/function member is accessible to
all member functions and the owner of the class
variable

private: data/function is only accessible to member
functions but not to the object owner

protected: similar to private, used with class
inheritance. Function members of derived class have
access, but the object owner does not.

default access type is private

Lecture 15 : Acess Restrictions 3 / 18

Access Examples

class A {
public:

int x;
void foo() { x++; y--; }

private:

int y;
void bar() { x--; y++; }

};

A a;

a.x = 0; // OK, public data member
a.foo(); // OK, public function member
a.y = 0; // NOT OK, private data member
a.bar(); // NOT OK, private function member

Lecture 15 : Acess Restrictions 4 / 18



Member Functions

Point p;

p.init(); // initialize coordinates in p

p.print(cout); // write point p to cout

Act on local data members

Defined in class body (or outside, later)

Can be called by the variable owner if public

Call syntax:
<class-variable>.<function-name>(<param-list>);

Lecture 15 : Member Functions 5 / 18

Member Function Implementation

C++ programs can be translated into equivalent C programs
(in fact, the first C++ compilers did just that)
How can class member functions be implemented?

Member functions access local data

Need object address ; add one parameter: pointer to object

Class::func(<param-list>) ;

Class_func(Class *p, <param-list>)

void Point::init() { x = y = 0; }
Point a; a.init();

=> possible translation into C:

void Point_init(Point *p) { p->x = p->y = 0; }
Point a; Point_init(&a);

Lecture 15 : Member Functions 6 / 18

Member Function Examples

class String {
public:
void set(const char *s);
int length() const; // const -> function can’t change data
void print(ostream &os = cout) const;
bool palindrome() const;
void reverse();

private:
... // internal data members

};

String str;
str.set("foo");
str.reverse(); // "oof"
str.print();
int l = str.length();

Lecture 15 : Member Functions 7 / 18

Separating Interface and Implementation

A class user does not need to know its implementation
details. Knowing the public members is sufficient

Suggestions (1):

Use a header file for each class

Put a comment on top of the class definition
describing its purpose. Briefly comment each
member. The class users look at the header files to
get concise documentation

Lecture 15 : Member Functions 8 / 18



Suggestions (2)

Consider #include directives to incorporate private
declarations into the class definition or put them at the end of
the class definition. Users don’t need to see them.

Small functions that are often called should be defined in the
class body. The compiler can then replace function calls by the
function body (inline functions)

Use member functions to acess data members (e.g. set_x,
get_x). It simplifies debugging and is more flexible w.r.t. later
implementation changes.

Otherwise, refrain from implementations in the class body —
it makes reading your code easier

Lecture 15 : Member Functions 9 / 18

Foo.H: Interface

#ifndef Foo_H

#define Foo_H

// What is Foo good for? ...

class Foo {

public:

// access functions

int get_x() const { return x; }

void set_x(int xnew) { x = xnew; }

// initialization

void init();

// print x to cout

void print() const;

private:

int x;

};

#endif

Foo.C: Implementation

#include "Foo.H"

#include <iostream>

void Foo::init()

{

x = 0;

}

void Foo::print() const

{

std::cout << x;

}

main.C: Application

#include "Foo.H"

int main()

{

Foo a;

a.init(); a.set_x(5);

a.print();

return 0;

}

Lecture 15 : Member Functions 10 / 18

Constructors

class Foo {
public:
Foo() { x = 0; } // constructor 1
Foo(int x_) { x = x_; } // constructor 2
int x;

};

Foo a; // constructor 1 called
Foo b(); // NO! - declares function b!
Foo c(10), *p = new Foo(1); // constructor 2 called
Foo d[100]; // constr.1 called 100 times

Class variables are automatically initialized by constructors

NICE! No uninitialized struct variables anymore!

If not defined, the (default) constructor does nothing

Declaration syntax for class X: X(<parameter-list>);

Lecture 15 : Member Functions 11 / 18

Destructors

class Foo {

public:

Foo() { p = new int[100]; }

~Foo() { delete [] p; } // clean up

int *p;

};

Is called whenever a class variable leaves the scope
or is deleted. NICE: automatic cleanup!
No parameters – only one destructor.
The default destructor does nothing
Must be defined whenever the class object allocates
resources (memory, files ...)
Declaration syntax for class X: ~X();

Lecture 15 : Member Functions 12 / 18



Copy Constructor

class Foo {
public:
Foo() { x = 0; }
Foo(const Foo &y) { x = y.x; } // copy constructor
int x;

};

void g(Foo x) { };

Foo a; // Constructor is called
Foo b = a; // Copy Constructor is called
g(b); // -"-, not called if void g(Foo &x)

Is called when a class variable is passed by value or a class

value is assigned in a class variable declaration

Default: direct copy (pointers: watch out!)

Declaration syntax for class X: X(const X &x);
Lecture 15 : Member Functions 13 / 18

Assignment Operator (1)

class Foo {
public:
int x;
Foo() { x = 0; }
Foo &operator=(const Foo &y) {
x = y.x;
return *this; // returns a reference to the object

} // itself. this points to the object and
}; // is implicitely known in member funcs.

Foo a, b; // calls constructor
a = b; // assignment operator called
Foo c = a; // copy constructor called in declaration

Lecture 15 : Member Functions 14 / 18

Assignment Operator (2)

The assignment operator can be overloaded for
classes

Prototype for class X:
X &operator=(const X &x);

Default assignment: member-by-member copy
(perhaps not what you want if class has pointer
members!)

Operator = should return reference to variable – this
makes a = b = 0 is possible!

Lecture 15 : Member Functions 15 / 18

#include <iostream> // Complete Example

using namespace std;

class X {

public:

X() { cout << "CONSTR" << endl; }

X(const X &x) { cout << "COPY" << endl; }

X &operator=(const X &x) { cout << "ASSIGN" << endl; return *this; }

~X() { cout << "DESTR" << endl; }

};

void g(X x) { cout << "g" << endl; }

int main() output:

{

X u; CONSTR

X v(u); COPY

X w = v; COPY

v = u; ASSIGN

g(v); COPY

g

DESTR

} DESTR x3
Lecture 15 : Member Functions 16 / 18



#include <iostream> // Vector class that requires ctor,cctor,aop,dtor

using namespace std;

class V {

public:

V(int n_) { alloc(n_); } // creates vector of n_ elements

V(const V &x) { copy(x); }

V &operator=(const V &x) { free(); copy(x); return *this; } // BUGGY!

~V() { free(); }

int size() const { return n; } // return #elements in vector

private:

int n; // number of elements

int *p; // vector has its own array, thus shallow copy does not work!

void alloc(int n_) { n = n_; p = new int[n]; } // allocates array

void free() { delete [] p; } // releases array

void copy(const V &x) { // copies array

alloc(x.size());

for (int i=0; i < n; ++i) p[i] = x.p[i];

}

};

Lecture 15 : Member Functions 17 / 18

Shallow vs. Deep Copy

If object only contains simple types or pointers that are shared

among objects, direct (=shallow) copy is OK – no need to

define the copy constructor and assignment operator

Otherwise, use deep-copy: define cctor and aop and recursively

clone data members

Make sure there are no resource leaks and no self-assignments!

class X
{
public:
X &operator= (const X &x) {
if (this == &x) return *this; // self-assignment!
... // release current resources and copy x
return *this

}
};

Lecture 15 : Member Functions 18 / 18


