- - Class Definition
Practical Programming Methodology

(CM PUT—201) class Pair {

public: // access qualifier
Michael Buro

// data members
int x, y;

// function members
void print(ostream &os) {

Lecture 15 08 << 7(? << x << 7,7 <<y <<)75
... }
@ C++ Class Definition void initQ { x =y = 0; }
@ Access Restrictions s
@ Member Functions Pair p; // define class variable
@ Interface and |mp|ementation p-init(); p.print(cout); // call member functions
@ Constructors, Destructor) .) .
C C ' Assi 0 Class bodies consist of declarations and definitions of
@ Copy Constructor, Assignment Operator data and function members

class A {
public:
@ public: the data/function member is accessible to
. int x;
all member functions and the owner of the class void f00() { x++; y——; }
variable
private:

@ private: data/function is only accessible to member

functions but not to the object owner int y;
void bar() { x-—; y++; }

@ protected: similar to private, used with class };
inheritance. Function members of derived class have
. A aj
access, but the object owner does not.
o default access type is private a.x =05 // UK, public data member
a.foo(); // OK, public function member
a.y = 0; // NOT OK, private data member
a.bar(); // NOT OK, private function member

C++ programs can be translated into equivalent C programs
(in fact, the first C++ compilers did just that)

Point p; How can class member functions be implemented?
c. e . . . o i
p.init(); // initialize coordinates in p Member functions access local data
p.print(cout); // write point p to cout @ Need object address ~» add one parameter: pointer to object

@ Class::func(<param-list>) ~»

Class_func(Class *p, <param-list>)
@ Act on local data members P. °P

@ Defined in class body (or outside, later) EO?d POth:fiI}i‘z)() {x=y=0;1}
oint a; a.init();

@ Can be called by the variable owner if public

=> possible translation into C:
e Call syntax: P

<class-variable>.<function-name>(<param-list>); void Point_init(Point #*p) { p->x = p->y = 0; }
Point a; Point_init(&a);

class String {
public:
void set(const char *s);

A class user does not need to know its implementation

int length() const; // const -> function can’t change data details. Knowing the public members is sufficient

void print(ostream &os = cout) const;

bool palindrome() const; : .

void reverse(): Suggestions (1):

: @ Use a header file for each class
private:

. // internal data members @ Put a comment on top of the class definition

b describing its purpose. Briefly comment each
String str; member. The class users look at the header files to
str.set("foo"); get concise documentation

str.reverse(); // "oof"
str.print();
int 1 = str.length();

Foo.C: Implementation

#ifndef Foo_H #include "Foo.H"
#define Foo_H #include <iostream>

. R // What is Foo good for? ... void Foo::init()
@ Consider #include directives to incorporate private g {

declarations into the class definition or put them at the end of class Foo { x = 0;

the class definition. Users don't need to see them. public:

void Foo::print() const
// access functions {
int get_x() const { return x; }

@ Small functions that are often called should be defined in the
class body. The compiler can then replace function calls by the
function body (inline functions)

std::cout << x;

}

main.C: Application

void set_x(int xnew) { x = xnew; }

// initialization #include "Foo.H"
void init(Q);

@ Use member functions to acess data members (e.g. set_x,
get_x). It simplifies debugging and is more flexible w.r.t. later

int main()

implementation changes. // print x to cout {
void print() const; Foo a;
@ Otherwise, refrain from implementations in the class body — private: e init(); a.set_x();:
it makes reading your code easier int x; a.print();
} return O;
#endif }

class Foo { class Foo {
public: .o
Foo() { x=0; } // constructor 1 pu:.ll((:)' { a int[100]: }
Foo(int x_) { x =x_; } // comnstructor 2 00 P = new int ’
int x; “"Foo() { delete [] p; } // clean up
¥ int *p;
};
Foo a; // comnstructor 1 called
Foo b(); // NO! - declares function b!
Foo c(10), *p = new Foo(1); // constructor 2 called @ |s called whenever a class variable leaves the scope
Foo d[100]; tr.1 called 100 ti . .
co d[100] // constr.1 calle mes or is deleted. NICE: automatic cleanup!
_ _ o @ No parameters — only one destructor.
@ C(lass variables are automatically initialized by constructors The default destructor does nothing
@ NICE! No uninitialized struct variables anymore! @ Must be defined whenever the class object allocates
@ If not defined, the (default) constructor does nothing resources (memory, files ...)
@ Declaration syntax for class X: X(<parameter-list>); @ Declaration syntax for class X: "X();

class Foo {
public:

Foo() { x =0; } class Foo {

Foo(const Foo &y) { x = y.x; } // copy constructor public:

int x; int x;
}; Foo(D { x = 0; %}

Foo &operator=(const Foo &y) {
void g(Foo x) { }; X = y.X;
return *this; // returns a reference to the object
Foo a; // Constructor is called } // itself. this points to the object and
Foo b = a; // Copy Comnstructor is called }; // is implicitely known in member funcs.
g(b); // -"-, not called if void g(Foo &x)
Foo a, b; // calls constructor
. . a = b; // assignment operator called
@ |Is called when a class variable is passed by value or a class Foo ¢ = a; // copy constructor called in declaration
value is assigned in a class variable declaration
@ Default: direct copy (pointers: watch out!)
@ Declaration syntax for class X: X(const X &x);

_ #include <iostream> // complete ExamPle

using namespace std;
class X {
public:
. X0 { t << "CONSTR" << endl; }
@ The assignment operator can be overloaded for X(const X &) { cout << "COPY" << ondl. 3
C|asseS X &operator=(const X &x) { cout << "ASSIGN" << endl; return *this; }
X0 { cout << "DESTR" << endl; }
@ Prototype for class X: d
X &Operat0r=(const X &X) ; void g(X x) { cout << "g" << endl; }
@ Default assignment: member-by-member copy fot main® output:
(perhaps not what you want if class has pointer X u; CONSTR
members!) X v(w; COPY
@ Operator = should return reference to variable — this Xw=v COPY
makes a = b = 0 is possible! v = us ASSTGN
g(v); COPY
g
DESTR
} DESTR x3

#include <iostream> // Vector class that requires ctor,cctor,aop,dtor
using namespace std;

class V {

public:
V(int n_) { alloc(n_); } // creates vector of n_ elements
V(const V &x) { copy(x); }
V &operator=(const V &x) { free(); copy(x); return *this; } // BUGGY!
VO { free(; }

int size() const { return n; } // return #elements in vector

private:
int n; // number of elements
int *p; // vector has its own array, thus shallow copy does not work!

void alloc(int n_) { n = n_; p = new int[n]; } // allocates array
void free() { delete [] p; } // releases array
void copy(const V &x) { // copies array

alloc(x.size());
for (int i=0; i < n; ++i) pl[il = x.p[i];

@ If object only contains simple types or pointers that are shared
among objects, direct (=shallow) copy is OK — no need to
define the copy constructor and assignment operator

@ Otherwise, use deep-copy: define cctor and aop and recursively
clone data members

@ Make sure there are no resource leaks and no self-assignments!

class X
{
public:
X &operator= (const X &x) {
if (this == &x) return *this; // self-assignment!

... // release current resources and copy X
return *this

