Practical Programming Methodology
(CMPUT-201)

Michael Buro

Lecture 11
e (C-Strings
e Unix 1/0O
e Cl1/0

A C-string is a sequence of characters
C-string constants are double-quoted

@ cout << "I am a string" << endl;
@ cout << "hello world\n";
@ can contain escape sequences such as \n or \a

@ " in the text is represented by \"
e.g. cout << "\"";

char s[9] = "Hello!";

s[0] s[1] s[2] s([3] s[4] s[5] s[6] s[7] s[8]
H e 1 1 o ! \O <both undef>

char s[] = "Hello!"; // reserves enough space to
// hold Hello! + \O

-> sizeof(s) =7

@ Array of characters which contains the character
sequence

@ Plus end-marker >\0’ (0 byte)

@ Some operations inefficient! C++ comes with a
more sophisticated string template class (later)

@ C-strings can be initialized via =

@ Ensure that the char array is big enough - must hold
characters + end-marker 0!

@ Character with code 0 cannot be represented in a
C-string because 0 indicates end-of-string

Assignments other than initializations are illegal

== and other relational operators don't work with
C-strings

Does not sound very useful

Solution: library functions!

_ int strcmp(const char si[], const char s2[]);
int strlen(const char s[]);

_ _ compares strings s1 and s2
@ returns the # of characters in s excluding the

end-marker returns O iff they are equal

return value > 0 iff s1 > s2 (lexicographical order)
return value < 0 iff s1 < s2

void strcpy(char dest[], const char srcl[]);

@ copies string src to dest

(dest must be large enough!) char *strdup(const char *s);

@ returns pointer to copy of string s
@ string is allocated using malloc ()
@ if no longer needed, delete via free(s);

void strcat(char dest[], const char src[]);

@ appends string src to dest overwriting its
end-marker and adds ’\0’
(dest must be large enough!) To learn more about functions in <string.h> issue

man string.h
e - / | [/0 |

#include <cstring>

char a[] = "aaa";
1 —_n ". char b[] = "aaaa";
char s [] = "hello 5 char C[] — "b";
char s2[100];
strcmp(a, a) == 0

strcpy(s2, s1); // s2 equals "hello" stremp(a, b) < 0

strcmp(c, b) > 0
char s_too_short[2]; F

strlen(b) == 4

strcpy(s_too_short, s1); // undefined!

// return length of string, pointer version
int strlen(const char *s)
{

const char *p = s;

while (*p) ++p;

return p-s; // pointer arithmetic

3

// copy t to s, pointer version
void strcpy(char *s, const char *t)

{

while (xs++ = xt++);

// appends the src string to the dest string
// overwriting the ’\0’ character at the end of
// dest and then adds a terminating ’\O’ character

void strcat(char dest[], const char srcl])
{

int i=0;

while (dest[i]) ++i; // find end-marker

int j=0;

char c;

do {

c = dest[i++] = src[j++]; // append src
} while (c);

Output using << operator works. E.g.

char s[] = "hello"; cout << s;

Input using >> also possible, BUT

@ leading whitespaces (blanks, tabs, newline) are
skipped

@ reading stops at next whitespace

@ string length in input may be larger than string

variable! Unsafel
DON'T USE >> WITH C-STRINGS!

const int N = 5;
char s[N];

cin.getline(s, N); cout << s << endl;

Input: 123456789\n Output: 1234

@ Input stream function
void getline(char s[], int max_total_len);
@ Reads entire input line into C-string s including
whitespaces
@ Copies up to max_total_len-1 characters
@ End-of-line character (*\n’) is not copied
@ Even better: C4++ string class (later)

// print all command-line arguments '/foo -0 x "foo bar" ’moe’
#include <iostream>
using namespace std;

output:
int main(int argc, char *argv[])
{ arg-0 "./foo"
for (int i=0; i < argc; ++i) arg-1 "-o"
cout << M"arg-" << i << " \"" << argv[i] << ’"’ << endl; arg-2 "x"

arg-3 "foo bar"
arg-4 "moe"

prototype: int main(int argc, char *argvl[]);

@ argc: number of command-line arguments @ When invoking a command, shell cuts input line
@ argv: array of pointers to command-line args. into pieces

@ argv[0]: pointer to program name @ uses space (’) as delimiter (but obeys strings)
@ argv[1]: pointer to first argument, ... @ removes leading and trailing spaces

typedef signed char sintl; Generic C pointer type (similar to Java Object reference)
typedef unsigned char uintil;
typedef signed int sint4; Any pointer can be assigned to a void* pointer
typedef float real;
// typedef double real; // alternative! void* pointers cannot be dereferenced (must use cast)
sint4 i; // signed four-byte integer
uintl c; // unsigned one-byte integer Used for creating generic containers and when actual
real r; // float or double .
pointer type does not matter:
typedef const char *ccptr;))
int strlen(ccptr s) { ... } // in <cstring>
// copies n bytes from src to dest (non-overlapping)
Type aliases are new type names for existing types void *memcpy(void *dest, const void *src, size_t n);

Syntax: typedef <variable-declaration>;

°
°

@ Variable identifier is treated as type name float alNl, blNI;
°

°

Can simplify complex type expressions // voidx parameters => no cast needed

@ In Unix all input and output is done by reading or @ The command shell connects fd 0,1,2 with the
writing to files console (input: keyboard, output: text window)

@ All devices are files (/dev/. ..) with special I/O @ User can redirect |/O to and from files using >, >>,
semantics and <

@ Open file before using it >> appends output to a file

» System checks access permissions
» If OK, it returns a small non-negative number — the file
descriptor

./prog < infile > outfile
connects file desriptors 0 and 1 to the named files

@ Normally file descriptor 2 remains attached to the

@ File descriptors (fd) 0,1,2 are called standard input, _
console to display error messages

standard output, and standard error, resp. _ _
@ Can also be redirected: syntax is shell-dependent,

e.g. bash: ./prog > xxx 2>&1
both stdout and stderr are redirected

@ C file pointers (fd wrappers) : stdin, stdout, stderr
@ C++ file streams cin, cout, cerr

// write one million integers to a file in binary format
. . . #include <cstdio>

@ Low-level I/O is handled by library functions #include <cstdlib>

#include <fcntl.h>

#include <unistd.h>

» open, creat, read, write, close
» write(1l, "hello world", strlen("hello world"));
» first argument is file descriptor (1 = stdout)

int main()

{
const int N = 1000000;

e fds 0,1,2 are opened when program starts int *a = new int[N];

for (int i=0; i < N; ++i) a[i] = i;

@ All other files have to be opened int £d = open("data", O_WRONLY);
. . . if (£d < 0) {
> l.Ilt open(char *name, 1int flags, int perms) perror ("encountered error"); exit(10);
» file name, access flags, access permissions }
. _ " " . if (write(fd, a, N*sizeof(a[0])) < 0) {
> int f(.i = open("foo", O_WRONLY, 0666); //ugo+rw perror ("encountered error"); exit(10);
» error iff return value < 0 }

if (close(fd) < 0) {
perror("encountered error"); exit(10);

@ man 2 open/read/write... ¥
}

#include <cstdio>
#include <cstdlib>

int main()

{
. . FILE *fp = fopen("foo", "w");
@ <cstdio> provides a wrapper for the low-level 1/0 if (1£p) { fprintf(stderr, "error"); exit(10); }
. for (int i=0; i < 500000; ++i) fprintf(fp, "%d ", i);
routines: struct FILE fclose (£p);
}
@ more convenient // C++ library version / SHOULD CHECK FOR I/0 ERRORS!

#include <fstream>
#include <iostream>
using namespace std;

e buffered: data is not transferred to device/file

immediately. It's appended to buffer which gets fnt main0

written when full ~ faster! ofstream of ("foo");

if ('of) { cerr << "error"; exit(10); }
for (int i=0; i < 500000; ++i) of << i << " ";
// of.close(); mnot needed - closed when of is destroyed

}

// C++ version ~1.25 times slower, but typesafe and extensible

int fgetc(FILE *fp);

reads next character from stream (> 0) or EOF if
@ returns 0 if something went wrong end-of-file or error

(errno contains error code)

FILE *fopen(char *filename, char *mode);

int fputc(int c, FILE *fp);

@ modes: : :
. _ : writes character c to stream, returns EOF iff error
r": read r+": read & write red
"w'": write (truncate) "w+": read & write (trunc.) occurre
"a": append int feof (FILE xfp);
@ FILE xfp = fopen("foo", "w"); if (!fp) { // error =0 iff end of file reached

int ferror (FILE *fp);
I= 0 iff error occurred
@ closes file, returns 0 iff no error occurred global variable errno contains error code (man errno)

perror ("Remark") ; prints error description
|Lectwre 1412:¢y0 0 28/%0]|tetweusl2:clo 0000000000000 s3]

int fclose(FILE *fp);

