Practical Programming Methodology
(CMPUT-201)

Michael Buro

Lecture 10

@ Unions
@ Pointers

enum SType { ST_INT, ST_FLOAT, ST_CHAR, ST_DOUBLE };

struct SaveSpace {

union { // anonymous union
int i; // all variables stored
float f; // at the same location
char C;
double d;
};
SType t; // what is stored?
};
SaveSpace s; // sizeof(s) = 12!

s.f = 3.5; s.t
s.d =4.7; s.t
s.i = b; s.t

ST_FLOAT; // store float value
ST_DOUBLE; // store double value
ST_INT; // store int value

union Shared { // regular union
int i; // all variables stored
float f; // at the same location
char c;
double d;

};

struct SaveSpace {
Shared u;
SType t;

} s

s.u.f = 3.5; s.t = ST_FLOAT; // store float value

@ Space-saving struct (identical syntax)

@ All data members are stored at the same location
(only works for C types, dangerous!)

@ Anonymous unions declare objects rather than types

@ Pointers are variables that contain the address of a
variable

@ A leading * in a variable declaration indicates a
pointer variable; no default initialization!

@ In pointer assignments the & (address) operator is
used to determine the address of an object in
memory (1st byte)

int *p; // read: p is a pointer to an int variable
int a;
p = &a; // the address of a is assigned to p
// "p points to a"

int *q = p; // q now also points to a

int x = 1, y;

int *ip; // ip is a pointer to int, or:
// "the object ip points to is an int"
// unitialized!

ip = &x; // ip now points to x

y = *ip; // y is now 1

*ip = 0; // x is now O

*ip += 10; // increments x by 10

@ The unary operator * is used for indirection (aka
dereferencing)

@ When applied to a pointer it accesses the object the
pointer points to

@ Higher precedence than arithmetic operators
@ Same precedence as ++ -- (rtl associativity)
@ Sometimes parenthesis are needed!

short x = 5;
short *ip = &x; // a pointer to x
short y = *ip + 1; // takes whatever ip points

// to, adds 1 and assigns
// the result to y

(*ip)++; // increments what ip points to (x)
+Hkip; // dito

xip++; // increments ip! * has no effect here

@ Required for dynamic data structures (lists,trees...)
@ Reserves memory on memory heap
@ Allocate a variable of type T: T *p = new T;

@ To deallocate (delete) an object a pointer p points
to: delete p;

int *pi = new int; // allocates memory holding one int
// do something with *pi
delete pi; // integer no longer needed

struct Point { int x, y; };
Point *pp = new Point; // allocates one Point

// do something with *pp
delete pp; // Point no longer needed

@ In C there is a strong relationship between pointers
and arrays

@ Any [] operation can be expressed by an
equivalent pointer expression

@ The pointer version used to be faster, but is harder
to understand

@ Modern compilers generate equally fast code

@ Arrays are passed to functions as a pointer to the
first element ~~ size information is lost

pa+C points to the C-th successor of *pa

izz :}Ei]i %al0]; // or = a; equivalent @ pa-C points to the C-th predecessor of *pa
| afo] | arftl | arf2l | a[3] | @ The actual address is incremented resp.
decremented by sizeof (xpa) * C

E.g. by 4xC if pa points to an int

~ ~ ~ ~

pa patl pat2 pat3
@ Array variables = constant pointers
e =1 g7 s atn) = Sl
x(patl) = 2; // sets a[l] = 2 pas &
*(pa+2) = 3; // sets a[2] =3 - _ .
*(pa+3) = 4; // sets al[3] =4 @ ali] equivalent to x(a+i)

@ &ali] equivalent to a+i
|Lectwre10: Pointers . 9/16]|letwel0:Poimts 0 10/16]

Two equivalent ways to access structure members via
@ int n; T *p; ... pointers:
p = ptn; // increments p by nxsizeof (T)
p = p—n; // decrements p by n*sizeof (T)

@ (*p) .member
@ p—>member

@ If p and g point to elements in the same array, struct Point { int x, y; } point, *pp;
== |= < > <= >= between p and q work properly
pp—>x = point.x;
@ Pointer subtraction also valid: if p and q point to pp—>y = point.y;

members of the same array and p >= q, then p—q is

the number of elements from p to q exclusive. (*pp) .x = point.x; // equivalent
(*pp) .y = point.y;
@ All other pointer operations are illegal *pp = point; // equivalent

_ // binary tree: nodes have at most two successors

struct Node {
int data; // data associated with node
Node *left, *right; // pointers to successor nodes

@ Trees are a special kind of graph

] }; // 0 indicates no successor
@ Graphs consist of nodes and edges that connect two
// create small tree: root
nodes
// / \
@ Trees: all nodes are connected, no cycles // a b
@ In C0mPUting science, trees are fundamental Node *root = new Node; // all components undefined!
dynamic data structures Node *a = new Node;
. . Node *b = new Node;
@ Data associated with nodes:
» Payload // *a and *b have no successors (they are "leaves")
» Pointers to successor nodes a->left = a->right = b->left = b->right = 0;

// connect sucessor nodes a and b to root
root->left = a; root->right = b;

int *A[4]; // array of 4 pointers to int

A[0] = new int[1]; // row of length 1

A[1] = new int[2]; // row of length 2

A[2] = new int[3]; // row of length 3

A[3] = new int[4]; // row of length 4

A is lower triangular matrix!

access entries with A[i][j] (i:row, j:column)

// deleting trees recursively in reverse order
// "what is connected last gets deleted first"

// precondition: n points to the root of a tree

void delete_tree(Node *n)

{ more memory efficient than multi-dimensional arrays
if (n == 0) return; // nothing to delete
delete_tree(n->left); // delete left subtree int **b; // b is a pointer to a pointer to an int
delete_tree(n->right); // delete right subtree // or: b points to array of int
delete n; // finally, delete node

+ Pointers are variables themselves, thus

@ they can be stored in arrays, and
@ can point to pointers
[lectwrewiPoinees sy | [Ceeet0iPeees g6 |

