
Practical Programming Methodology
(CMPUT-201)

Michael Buro

Lecture 10

Unions

Pointers

Lecture 10 : Overview 1 / 16

Unions (1)

enum SType { ST_INT, ST_FLOAT, ST_CHAR, ST_DOUBLE };

struct SaveSpace {

union { // anonymous union

int i; // all variables stored

float f; // at the same location

char c;

double d;

};

SType t; // what is stored?

};

SaveSpace s; // sizeof(s) = 12!

s.f = 3.5; s.t = ST_FLOAT; // store float value

s.d = 4.7; s.t = ST_DOUBLE; // store double value

s.i = 5; s.t = ST_INT; // store int value

Lecture 10 : Unions 2 / 16

Unions (2)

union Shared { // regular union

int i; // all variables stored

float f; // at the same location

char c;

double d;

};

struct SaveSpace {

Shared u;

SType t;

} s;

s.u.f = 3.5; s.t = ST_FLOAT; // store float value

Space-saving struct (identical syntax)

All data members are stored at the same location
(only works for C types, dangerous!)

Anonymous unions declare objects rather than types

Lecture 10 : Unions 3 / 16

Pointers and Addresses

Pointers are variables that contain the address of a
variable
A leading * in a variable declaration indicates a
pointer variable; no default initialization!
In pointer assignments the & (address) operator is
used to determine the address of an object in
memory (1st byte)

int *p; // read: p is a pointer to an int variable

int a;

p = &a; // the address of a is assigned to p

// "p points to a"

int *q = p; // q now also points to a

Lecture 10 : Pointers 4 / 16

Dereferencing Pointers

int x = 1, y;

int *ip; // ip is a pointer to int, or:

// "the object ip points to is an int"

// unitialized!

ip = &x; // ip now points to x

y = *ip; // y is now 1

*ip = 0; // x is now 0

*ip += 10; // increments x by 10

The unary operator * is used for indirection (aka
dereferencing)

When applied to a pointer it accesses the object the
pointer points to

Lecture 10 : Pointers 5 / 16

Operators & *

Higher precedence than arithmetic operators

Same precedence as ++ -- (rtl associativity)

Sometimes parenthesis are needed!

short x = 5;

short *ip = &x; // a pointer to x

short y = *ip + 1; // takes whatever ip points

// to, adds 1 and assigns

// the result to y

(*ip)++; // increments what ip points to (x)

++*ip; // dito

*ip++; // increments ip! * has no effect here

Lecture 10 : Pointers 6 / 16

Dynamic Memory Allocation Preview

Required for dynamic data structures (lists,trees...)

Reserves memory on memory heap

Allocate a variable of type T: T *p = new T;

To deallocate (delete) an object a pointer p points
to: delete p;

int *pi = new int; // allocates memory holding one int
// do something with *pi
delete pi; // integer no longer needed

struct Point { int x, y; };

Point *pp = new Point; // allocates one Point
// do something with *pp
delete pp; // Point no longer needed

Lecture 10 : Pointers 7 / 16

Pointers and Arrays

In C there is a strong relationship between pointers
and arrays

Any [] operation can be expressed by an
equivalent pointer expression

The pointer version used to be faster, but is harder
to understand

Modern compilers generate equally fast code

Arrays are passed to functions as a pointer to the
first element ; size information is lost

Lecture 10 : Pointers 8 / 16

Array Example

int a[4];

int *pa = &a[0]; // or = a; equivalent

| a[0] | a[1] | a[2] | a[3] |

^ ^ ^ ^

pa pa+1 pa+2 pa+3

*pa = 1; // sets a[0] = 1

*(pa+1) = 2; // sets a[1] = 2

*(pa+2) = 3; // sets a[2] = 3

*(pa+3) = 4; // sets a[3] = 4

Lecture 10 : Pointers 9 / 16

Pointers and Arrays continued

pa+C points to the C-th successor of *pa

pa-C points to the C-th predecessor of *pa

The actual address is incremented resp.
decremented by sizeof(*pa) * C

E.g. by 4*C if pa points to an int

Array variables = constant pointers
I pa = a; // legal
I a = pa; // illegal

a[i] equivalent to *(a+i)

&a[i] equivalent to a+i

Lecture 10 : Pointers 10 / 16

Pointer Arithmetic

int n; T *p; ...

p = p+n; // increments p by n*sizeof(T)

p = p-n; // decrements p by n*sizeof(T)

If p and q point to elements in the same array,
== != < > <= >= between p and q work properly

Pointer subtraction also valid: if p and q point to
members of the same array and p >= q, then p-q is
the number of elements from p to q exclusive.

All other pointer operations are illegal

Lecture 10 : Pointers 11 / 16

Pointers and Structures

Two equivalent ways to access structure members via
pointers:

(*p).member

p->member

struct Point { int x, y; } point, *pp;

pp->x = point.x;

pp->y = point.y;

(*pp).x = point.x; // equivalent

(*pp).y = point.y;

*pp = point; // equivalent

Lecture 10 : Pointers 12 / 16

Programming with Pointers Example

Trees are a special kind of graph

Graphs consist of nodes and edges that connect two
nodes

Trees: all nodes are connected, no cycles

In computing science, trees are fundamental
dynamic data structures
Data associated with nodes:

I Payload
I Pointers to successor nodes

Lecture 10 : Pointers 13 / 16

// binary tree: nodes have at most two successors

struct Node {
int data; // data associated with node
Node *left, *right; // pointers to successor nodes

}; // 0 indicates no successor

// create small tree: root
// / \
// a b

Node *root = new Node; // all components undefined!
Node *a = new Node;
Node *b = new Node;

// *a and *b have no successors (they are "leaves")
a->left = a->right = b->left = b->right = 0;

// connect sucessor nodes a and b to root
root->left = a; root->right = b;

Lecture 10 : Pointers 14 / 16

Delete Tree

// deleting trees recursively in reverse order

// "what is connected last gets deleted first"

// precondition: n points to the root of a tree

void delete_tree(Node *n)

{

if (n == 0) return; // nothing to delete

delete_tree(n->left); // delete left subtree

delete_tree(n->right); // delete right subtree

delete n; // finally, delete node

}

Lecture 10 : Pointers 15 / 16

Pointer Arrays, Pointer to Pointers

int *A[4]; // array of 4 pointers to int

A[0] = new int[1]; // row of length 1

A[1] = new int[2]; // row of length 2

A[2] = new int[3]; // row of length 3

A[3] = new int[4]; // row of length 4

A is lower triangular matrix!

access entries with A[i][j] (i:row, j:column)

more memory efficient than multi-dimensional arrays

int **b; // b is a pointer to a pointer to an int

// or: b points to array of int

Pointers are variables themselves, thus
they can be stored in arrays, and
can point to pointers

Lecture 10 : Pointers 16 / 16

