Declared outside of any block

Practical Programming Methodology
(CMPUT-201)

@ Numbers initialized with default value 0

Michael Buro @ Scope is entire program unless the static modifier
is used to indicate that the variable's scope is local
to the current module

@ Should be avoided because of potential name

Lecture 9 conflicts and accidents (every program part can

@ Global / Static Variables change global variables!)
Static and global variables are placed in the process

data memory segment

@ Arrays
@ C-Structures

main.c:

int global; // initialized with 0 (%) #include "global.h"

int main()

{
global_val = 1.0;

float global_pi = 3.1415926535; // everyone can change it!

const float global_e = 2.718; // const prevents this!

static int I_am_local_to_the_current_file; // initialized to O b
1nt main() global.h:
float global; // (%%), masks (*), uninitialized #ifndef GLOBAL_H global.c:
#define GLOBAL_H // definiti
global = 5; // changes local variable (%) / detinition
global_pi = 0.0; // possibly not intended // declaration int global_val;
b extern int global_val;
#endif

int do_something() {

static int numberOfCalls = 0; // assignment only sizeof operator can be applied to any type or variable
// done once!!!

++number0fCalls;

It returns the number of bytes a variable occupies in

if (! (number0fCalls % 100)) { memory

// print statistics every 100-th call Eg
¥ sizeof (char) ==

’ sizeof (int) == 4 (usually)

@ static modifier sizeof (double) ==
@ Global variables in disguise .
@ Initialized before the function is called for the first int Xx;

time cout << sizeof(x) << endl; // > 4

@ They keep their values between calls!
Lecture 9 : Static Variables ~~ 5/% | |lectwe0:StaticVarbls &/5|

Arrays group together variables of identical type -
E.g. declaring array a (8 integers): int a[8]; const int M = 256;
Access by index: ali] = 0; char A[12]; // OK - 12 characters A[0]..A[11]
Elements are laid out consecutively in memory
_ int B[N]; // not OK! not a constant expresssion
int a[8];

float C[2#M]; // OK - 512 floats C[0]..C[511]
address contents address contents
x ..x+3 al0] x+16..x+19 a[4] @ Syntax: <type> <ident> [<const-int-expr> 1] ;
xtd L .x+7 - ald] x+20..x+23 a[5] @ Integer expression defines the number of objects in
x+8 ..x+11 a[2] x+24. .x+27 a[6] .
x+12. .x+15 a[3] x+28 . .x+31 a[7] fch_e.ar_ray. In case of simple types, they are not

initialized!

This array occupies 8-sizeof(int) = 32 bytes in memory @ Array index always starts with 0

@ Arrays with more than one index

int A[4]; // 4 integers - not initialized!
int B[4] = { 4, 3, 2, 1 }; // B[0]=4,..B[3]=1 char page [ROWS] [COLS] ;
char C[2] = { ’a’,’b’,’c’ }; // invalid! too many . .
char D[] =4 ’a’,’b’,’c’ }; // OK, declares D[3] int table4[2] [2] [2] [2];
int E[2] = {1 }; // 0K, E[0]=1 E[1]=0 @ Rectangular array of array of ...
@ Flat memory layout (“mailbox” format)
e <type> <indent>[{<const-int-expr>}] = address contents
{<const-expr>,...,<const-expr> };
@ The list of constant expressions is evaluated and x + pagel01[0] page[0][1] ... page[O][COLS-1]
. x+COLS : pagel[1][0] pagel[1][1] ... pagel[1] [COLS-1]
assigned to the array elements o
@ If list is shorter than array size, Os are padded x+COLS*: page[ROWS-1]1[0]... page[ROWS-1] [COLS-1]
@ Array size can be omitted; it is then equal to the list (ROWS-1)

total: ROWS*COLS bytes

length
lecwreoimmys s iAoy

int table[2]1[2] = { { 0,1}, { 2,3} }: @ Syntax: <ident> [<integer-expression>]
// after initialization: @ The expression is evaluated and the array element
// tab[0]1[0] = 0, tab[0][1] =1 with that index is accessed
// tab[1][0] = 2, tab[1][1] = 3 @ No index out-of-bounds checks!
int add_table_entries() #include <cassert>
{ const int N = 10;
int s = 0; int A[N];
for (int i=0; i < 2; ++i) {
for (int j=0; j < 2; ++j) { for (int i=1; i <= N; ++i) cout << A[i];
s += tablel[il[j]; // tableli,j] is illegal // oops! that’s a bug which is hard to detect!
}
} for (int i=1; i <= N; ++i) { // buggy!
return s; assert(i >= 0 & i < N); // this kills out-of-
} cout << A[i] << " v, // bounds bugs dead!
}

const int N = 10;
int A[N];

void sort(int all]); // doesn’t work, what’s a’s size?
void sort(int al[], int size); // makes more sense

ééft(A, sizeof (A) /sizeof (A[0])); // OK

@ Arrays are passed by reference

@ An array parameter is essentially the array starting
address. There is no size information attached to it!
Need to pass number of elements

@ Functions cannot return arrays

@ Common computational tasks
@ Need to be implemented efficiently

@ Details in algorithms/data structure courses such as
CMPUT-204

@ Here only some basics to illustrate C/C++
programming with arrays:
» linear search
» simple sorting

@ Task: find an element in an array
@ if found, return smallest index, otherwise return -1

Task: return index of maximum array element

// precondition: A has at least size elements
// postcondition: returned value is smallest
// index of e in array A, or -1 if not found

int find(int e, const int A[], int size)

{
for (int i=0; i < size; ++i)
if (A[i] == e)
return i;
return -1;
}

// precondition: A has at least size > O elements
// postcondition: returned value is the index
// of the maximum array element

int index0OfMax(const int A[], int size)

{
assert(size > 0);
int max_ind = 0; // current index of maximum value
int max_val = A[0O]; // current maximum value

for (int i=1; i < size; ++i)
if (A[i] > max_val) {
max_val = A[i]; max_ind = i;
}

return max_ind;

Task: sort an array in increasing order

Idea: find maximal element, move it to the end, and
apply the same algorithm to the remaining array part
(" Selection Sort")

// precondition: A has at least size elements
// postcondition: A[0] <= A[1] <=...<= A[size-1]

int sort(int A[], int size)
{
for (int 1l=size; 1 > 1; --1) {
// swap maximal element in A[O0..1-1] with A[1-1]
swap (A[index0fMax (A, 1)], A[1-1]);
}
}

struct Point {
int x, y;

struct Complex {
float re, im;

};

Point p; 3
Complex a, b, c;

p'X = 100; p.y = 200; a = add(b, C);

plot (framebuffer, p, color);

@ Collection of one or more variables

@ Grouped together under a single name
o Called “records” in the Algol family

@ Structures help organize data

PersonInfo x;

struct PersonInfo {
int height; x.height = 180;
int weight; X.weight = 78;
Date birthday; x.birthday.year = 1965;
}; x.birthday.month = 4;
x.birthday.day = 5;

struct Date {
int year;
int month;
int day;

};

Date date = { 1965, 4, 5 };

@ Data members are laid out in consecutive memory
locations

@ Recursive structure definitions are not allowed
@ Data is accessed by the . operator

@ Structure variables are not initialized by default!
e Explicit initialization: add
= { <const-expr>, ..., <const-expr> }

@ Data members are initialized corresponding to their
order in definition

struct Complex {
float re, im;

};

Complex add(const Complex &a, const Complex &b)
{
Complex r;
r.re = a.re + b.re; r.im = a.im + b.im;
return r;

3

struct Point { int x, y; };
Point pl, p2;

pl = p2; // equivalent to pl.x = p2.x; pl.y = p2.y;

@ Structures can be passed by value or by reference
@ Passing by reference is faster

@ Returning structs is allowed

@ Difference to Java: C-structs are allocated on stack

@ Layout and size of structures depend on compiler

and machine architecture!
@ In g++ under Linux for Intel/AMD x86 CPUs:
» ints are aligned to addresses divisible by 4
» shorts are aligned to addresses divisible by 2

struct Foo {
char a; int b; char c;

} x;

struct Bar {
char a; char c; int b;
}ys

How x is stored in memory:
x.a 1 byte
unused 3 bytes
x.b 4 bytes
X.C 1 byte
unused 3 bytes total 12 y-c

How y is stored in mem.:
y.a 1 byte
y.b 1 byte
unused 2 bytes

4 bytes total 8

@ Structure variables can occur on the lhs of
assignments

@ Type of the rhs expression must be identical
@ All structure members are copied one by one

@ By default, structures can’t be compared
(but see overloading ==, >, ... for C++ classes)

@ Accessing aligned ints is faster than unaligned ints

@ Reason: data bus from CPU to memory is 32, 64, or
even 128 bits wide
» aligned int: just one memory access
» unaligned int: possibly two accesses!

physical memory organization: 4-byte words

0 1 2 3 int stored at 0..3: 1 access

4 5 6 7 int stored at 5..8: 2 accesses!
8 9 10 11

12 13 14 15

struct Foo { struct

char a; int b; char c; __attribute__((packed)) Foo
rox; {

char a; int b; char c;

How x is stored in memory: }x;

X.a 1 byte

unused 3 bytes How x is stored now:

x.b 4 bytes X.a 1 byte

X.C 1 byte x.b 4 bytes

unused 3 bytes total 12 X.C 1 byte total 6!

@ Save memory with __attribute__((packed))
@ packed structures: smaller, but slower access

@ non-standard C language extension

@ Compiles only with gcc/g++

