
Practical Programming Methodology
(CMPUT-201)

Michael Buro

Lecture 8

gcc and g++

Modular Programming

Makefiles

Lecture 8 : Overview 1 / 15

How gcc and g++ roughly work

gcc is a C compiler, g++ is a C++ compiler

They translate readable C/C++ program representation into
machine code (sequence of numbers) that can be executed by
CPU

g++ -o hello hello.c

I First runs the preprocessor on hello.c
I Then checks whether the result is a valid C++ program,
I if OK, it generates an assembly language representation

of hello.c in a file – say hello.s
I calls assembler (/usr/bin/as) with hello.s which

produces object file hello.o, and
I finally calls the linker (/usr/bin/ld) which generates

executable file hello from all object (.o) files

Lecture 8 : gcc and g++ 2 / 15

Assembly Language

Readable representation of machine code

Issue g++ -S hello.c to create hello.s

(man g++ describes many more options)

Use less hello.s to see what’s in the file

Assembly language is rarely used by application
programmers anymore because compilers usually
generate fast code

Only needed if compiler generates slow/buggy code
or it does not make use of the latest CPU
instruction set extensions (e.g. SSE)

(online demonstration)

Lecture 8 : gcc and g++ 3 / 15

Modular Programming

Modularization makes large programming projects
manageable

When implemented properly, parts can be compiled
separately ; faster edit-compilation cycle

C/C++ way:

Put function and type declarations in header (.h) files

Put function definitions in modules (.c files) which can be
compiled separately

Modules that make use of functions and types need to
#include the header files that contain their declaration

Lecture 8 : Program Modules 4 / 15

Separate Compilation of Modules

For each module file.c call
g++ -c -o file.o file.c

This will create object (.o) file file.o which
contains executable code plus house-keeping data
such as function names. Object files are not
executable!

Finally, link all project object files with
g++ -o proj file_1.o ... file_n.o

This will combine all object files and start-up code
into the executable file proj

Libraries: archives of object files (man ar)

Lecture 8 : Program Modules 5 / 15

Example

foo.h:

#ifndef FOO_H
#define FOO_H
// comment ...
const int FOO_MAX = 100;
int foo(int x);

#endif

bar.h:

#ifndef BAR_H
#define BAR_H
// comment ...
int bar(int x);

#endif

foo.c:

#include "foo.h"
#include "bar.h"
int foo(int x) { ...bar(x)... }

bar.c:

#include "bar.h"
int bar(int x) { ... }

foobar.c

#include "foo.h"
#include "bar.h"

int main()
{
foo(x) ... FOO_MAX ...
bar(y) ...

}

Lecture 8 : Program Modules 6 / 15

Makefiles (1)

Purpose: executing shell commands according to file
dependencies and timestamps

Handy for compilation
I Only compile modules that depend on recent changes
I Easy to change compiler options globally
I Adjust to operating system environments using

conditional statements

Can also be used for other tasks including
I Cleaning up directories
I Create pdf-file from LaTeX source
I Generating html-documentation (doxygen)

Lecture 8 : Makefiles 7 / 15

Makefiles (2)

Rules = File dependencies and commands for
updating files are stored in file commonly named
makefile or Makefile

Invocation: make or make <target>

Executes commands for building first target in
makefile or specific target

Lecture 8 : Makefiles 8 / 15

makefile Example

executable foobar depends on foobar.o, foo.o, and bar.o
generate it with g++ if one of those files is newer
than foobar. foobar is "made" when make is called
foobar : foobar.o foo.o bar.o
<tab> g++ -o foobar foobar.o foo.o bar.o

foo.o depends on foo.c foo.h bar.h
if one of those are newer than foo.o call g++ to update it
foo.o : foo.c foo.h bar.h
<tab> g++ -c -o foo.o foo.c

bar.o : bar.c bar.h
<tab> g++ -c -o bar.o bar.c

foobar.o : foobar.c foo.h bar.h
<tab> g++ -c -o foobar.o foobar.c

"make" updates first target (foobar)

Lecture 8 : Makefiles 9 / 15

Variables

Variables contain strings

They can be used in command lines like so:

I CC := g++
I CCOPTS := -Wall -O3
I $(CC) $(CCOPTS) later expands to

g++ -Wall -O3

Useful for changing compiler options globally

Lecture 8 : Makefiles 10 / 15

Recursively Expanded Variables

= sets the value of a variable that is expanded recursively

FOO = $(BAR)

BAR = $(MOO)

MOO = moo

Then $(FOO) is expanded to moo

Lecture 8 : Makefiles 11 / 15

Singly Expanded Variables

:= sets the value of a variable that is expanded once

X := foo

Y := $(X) bar

X := later

Then $(Y) is expanded to foo bar

Singly expanded variables contain no variable references
(but their values at the time of definition)

Advantages: simpler behaviour, faster, can build lists!
E.g. CCFLAGS := $(CCFLAGS) -O

Lecture 8 : Makefiles 12 / 15

Pattern Rules

Generalized file dependencies + command(s)
Example:

I %.o : %.c

$(CC) $(CCOPTS) -c -o $@ $<

means: file %.o depends on file %.c for all words %
(% = wildcard)

I command is executed whenever a file.o is needed and
file.c is more recent than file.o

Command line(s) must start with tab character!
Special variables are replaced by actual values when
rule is applied

I $@ : rule target
I $< : first prerequisite
I $^ : all prerequisite

Lecture 8 : Makefiles 13 / 15

Complete makefile with Pattern Rule
CC := g++

WARN := -Wall -W -Wuninitialized

debug settings, uncomment when debugging

CCOPTS := $(WARN) -g

optimization settings, uncomment when done with debugging

CCOPTS := $(WARN) -O3 -DNDEBUG

how to compile .c files

%.o : %.c

$(CC) $(CCOPTS) -c -o $@ $<

link executable when .o files are newer

foobar : foobar.o foo.o bar.o

$(CC) -o $@ $^

remove object files and executable

clean:

rm -rf *.o foobar

file dependencies generated by "g++ -MM *.c"

foobar.o : foobar.c foo.h bar.h

foo.o : foo.c foo.h bar.h

bar.o : bar.c bar.h

Lecture 8 : Makefiles 14 / 15

GnuMake

Part of the GNU (“Gnu is Not Unix”) software
collection

Free software implementation of original make +
many additional features

Very powerful tool!

Reading tutorials and documentation is highly
recommended
www.gnu.org/software/make/manual

Interesting advanced reading dealing with managing
large programming projects

”Recursive make considered harmful” (google)

Lecture 8 : Makefiles 15 / 15

