Practical Programming Methodology void primt(int);
(ChﬂPLfT—QOl) void print(double);

void print(char);
Michael Buro

char c;
int i;
short s;
float f;

Lecture 7 print(c); // exact match: calls print(char)
print(i); // exact match: calls print(int)
print(s); // integral promotion: calls print(int)
e C/C++ Preprocessor print(f); // float promotion: calls print(double)

@ Testing

@ Function Overloading

print(’a’); // exact match: calls print(char)

@ We would like to use a single function name for
similar functionality applied to different types.
Eg. + - x / print

e Compilation: transforming a textual program
description into an executable form

_ o _ o @ Preprocessor: separate first step in compilation:
@ Compiler distinguishes functions by their signature: » Remove comments

function name + list of parameter types without & » Macro substitution (#define)

and const. Return type is not considered! » Conditional compilation (#if)

@ To find the matching function the compiler > File inclusion (#include)

@ Preprocessor directive: first non-white-space

» looks for an exact type match first, C e
character in line is #

» then for matches after promotion within integer and

floating point types, and then @ Only one per line
» for other conversions of built-in or user types

#define FOREVER for(;;)

FOREVER { foo(); %}
is translated into:

for (5;) { fooO; }

@ Syntax of a macro definition:
#define <identifier> <replacement text>

@ Subsequent occurrences of the identifier in identifier context
get replaced by the replacement text. E.g.

xxFOREVERxx and "FOREVER" are not replaced!
@ Replacement text normally is the remainder of line

@ Long definitions may be continued by placing \ at the end of
each line to be continued

@ Scope is from point of definition to the end of current file

#define extract_index(x) (((x) >> 8) & Oxff)
index = extract_index(packed_data);
becomes

index = (((packed_data) >> 8) & O0xff);

@ Syntax: #define <ident>(<ident>,...,<ident>) <text>

@ Macro parameters get replaced by actual arguments when
macro is expanded

@ Macro expansion is done recursively until no more matches are
found

#define FOR(i,n) for (i=0; i<(n); ++i)

FOR (i, 10) { foo(i); %}
becomes
for (i=0; i<(10); ++i) { foo(i); %}

#define MAX(a,b) ((a)>(b)7(a): (b))
not recommended! multiple evaluation!
also, use lots of () to ensure evaluation order!

MAX (a++,b++)
becomes
((a++)>(b++)?(a++) : (b++)) 00PS! 2x a++,b++!

In C++ there is hardly any reason for using parameter-

ized macros anymore! Use template/inline functions (later).

@ Syntax & Semantics

#if <const-expr>
#ifdef <ident>
#ifndef <ident>

: true iff const-expr != 0
: true iff <ident> is defined
: true iff <ident> is undef.

#else : alternative path
#elif <const-expr>: else-if condition
#endif : end of #if statement

@ <const-expr> can consist of macro names, integer
constants, operators, parenthesis and
defined(<macro-name>)

@ #error "text': generates error msg. "text"

#1fdef UNIX e Two forms:
Unix code #define TEST 1 #include "filename"
#elifdef WINDOWS #include <filename>
Windows code #if TEST L g g
4olse test code @ Line is replaced by the content of the file filename,
#error "Unsupported 0S" #ondif which itself may contain #include lines
#endif @ "filename" : search for file begins in directory

where the source program is located. If not found,

@ Compiling parts of programs depending on constant search in system header directories

expressions. If false, program text is skipped) o
@ <filename> : search file in system header

@ Useful for dealing with different environments and debugging directories

@ Can pass macro definitions to gcc/g++ via -D option. E.g.
g++ -DUNIX -DNDEBUG foo.c // UNIX,NDEBUG defined
g++ -DF00=3 foo.c // FOO has value 3

@ Main purpose: including interface information such
as function and class declarations

[Lectwre 72 Preprocessor . 9/16 [teeweTiPepocessr . w0/
How to avoid including the same file twice which would
#include <iostream> cause compiler error messages or warnings?

mydecl.h:

std::cin, std::cout, std::cerr, #ifndef MYDECL_H // distinct macro for
overloaded operators << >> etc. now declared #define MYDECL H // each header file

#define FOR(i,n) for (i=0; i<(n); ++i)
#include "mydecl.h"

int square(int x);
_) int swap(int &x, int &y);
Your functions and classes declared in local int bitcount(unsigned int x);

file mytypes.h now visible

#endif

// returns approximation of square-root of x)
// precondition: x >= 0 @ Syntax: #include <cassert>

assert (<expression>);

double sqrt(double x) { . . .
@ Execution stops iff the expression evaluates to 0. An
if (x < 0) { cerr << "sqrt:x<0" << endl; exit(5); } P P

. compute square root T error message informs about .the program file and
. check whether r*r is close to x line number where the assertion failed

return r; @ Check can be turned off by defining NDEBUG before
#include <cassert>
(usually done with compiler option ~DNDEBUG)

¥

@ Testing each function is CRUCIAL

Turn assert on when debugging program
@ Pre- and post-conditions should be checked during program
execution in function body

Turn off to speed up execution when convinced that
code is correct
@ Also check border cases with separate code

//#define NDEBUG // uncomment to turn assert checks
// off or pass -DNDEBUG to g++
#include <cassert>

g++ -E
// computes the square root of x o .
// precondition: x >= 0 stops compilation after the preprocessing phase and

prints result to stdout
double sqrt(double x) {
assert(x >= 0); // pre-condition Easy way to check what the preprocessor does

. compute square root r (online demonstration)

assert(...r approximates sqrt(x)...); // post-cond.
return r;

¥

