Practical Programming Methodology
(CMPUT-201)

Michael Buro

Lecture 4

@ Constants
@ Operators

@ An integer constant like 12345 is an int
int foo = 12345;

@ Unsigned constants end with u or U
unsigned short bar = 60000u;

@ Leading 0 (zero) indicates an octal (base 8)
constant (e.g. 037 = 3-8+ 7 = 31)
unsigned short file permissions = 0666;

@ Leading Ox means hexadecimal (base 16).
E.g. Ox1f = 31, 0x100 = 256, Oxa = 10
unsigned int thirty two_ones = Oxffffffff;

@ Floating-point constants contain a decimal point
(123.4) or an exponent (2e-2 = 2-1072 = 0.02) or
both

@ Their type is double (8 bytes), unless suffixed
@ Suffixes f and F indicate float (4 bytes)
@ | or L indicate long double (12 bytes)

float two = 2.0; // converted to float
float e = 2.71828182845905¢;
long double half = 0.5L;

char charx = ’x’; // = 120
char newline = ’\n’; // = 10
char digitl = 0’ + 1; // =49 (1°)
char hex = \x7f’; // = 127

e Characters within single quotes e.g. ’A’ %’
@ Characters are stored as integers using their ASCII
code. E.g. 0’ is represented as 48 (man ascii)
@ Escape sequences for non-printable characters:
’\n’ newline, ’\’’ single quote,
’\\’ backslash, *\a’ bell,
’\r’ carriage return, ’\xhh’ hexadecimal code

enum Month { JAN=1, FEB, MAR, APR,...};
// JAN=1 FEB=2 MAR=3 APR=4 ...

Month x, y;

x = JAN; y = APR;

@ List of names of integer constants, as in
enum Answer { NO, YES };

@ First constant has value 0, next 1, etc.

@ Values can be assigned, unassigned successor values
are incremented

@ Names in different enumerations must be distinct.
Values need not.

+ — x / % : result type depends on operands

@ x) y computes the remainder when x is divided by
y (can not be applied to floating-point values)

@ Result of % for negative operands is machine
dependent, as is the action on overflow

@ Division int / int rounds towards 0

int x1 = x0 + delta;
float ¢ = a * b;

int y1=8/5; // =1
int y2 =-8 / 5; // = -1
int y3 =8 % 5; // =3

@ Two int operands : integer operation
» Carefull (4/5) =0 !
» Division result is rounded towards 0

@ One integer and one floating-point operand
» int value is silently converted into floating-point
» then the floating-point operator is executed
» (4.0/5) = (4/0.5) = 0.8

@ Two floats: floating-point operation
» (4.0/5.0) = 0.8

If x and y are integers and you want to compute the
“exact” floating-point ratio you need to cast like so:

double ratio = ((double)x)/y;

Compare two values with > >= < <= == |I=

result type bool

Watch out: == is equality test, = is assigment!

bool vli_eq_v2 = (vl == v2);

bool x_ge_0 = (x >= 0);

bool x = 5; // '= 0 -> true

int a= (1 >0); // true —> 1

bool vs. int
@ In integer expressions, bool values are interpreted as

0 (false) or 1 (true)

@ int values != 0 are interpreted as true, 0 as false

if (a >= ’a’ && a <= ’z’).. // a is a lower-case letter

if (a <0’ || a>"9%)... // a is #*notx a digit
L . if ('valid) ... // true iff valid is false

g++ -Wall -Wuninitialized -W -0 test.c
reports potentially dangerous but valid C++ code such && || : Boolean shortcut operators
as @ evaluated from left to right

_ .) @ evaluation stops when truth-value is known

if (¢ = 0) .. // assignment, not equality test

@ && (shortcut and): evaluation of (expl && exp2) stops

or uninitialized variables (for which data-flow analysis is when exp1 evaluates to false
required which is done when optimizing code: -0) @ || (shortcut or): evaluation of (expl || exp2) stops when

expl evaluates to true

! . Boolean negation !false = true, !true = false
(can also be applied to ints: !5 = false, !0 = true)
|Lectue4:Operatos 9/ | |tectwes:Operatos O /2]

a++; ++a; // identical (value not assigned)

++ : adds 1 to its operand

° :

int x = b;
@ —— : subtracts 1 int y = Xt++; // y=5’ x=6
@ can be either prefix (++n) or postfix (n++) int z = ++x; // z=7, x=7
@ ++n increments n, value of expression is that of n

after increment int n = 3;

@ n++ increments n, value of expression is original + n++; // undefined!
value of n y =y && n++; // DANGER!

"
Il
(=]

Watch out! If expression terms have side-effects like ++,
evaluation order matters! To be safe, split expression!
[Lecture4:Operats .~ u/»||lewed:Opentos 0 22|

Useful for manipulating individual bits or groups of bits
in integers

Is fast (parallel computation) and can save space

~

: complement

& : bitwise AND

| : bitwise inclusive OR

" : bitwise exclusive OR (XOR)
<< : left shift

°
°
°
°
°
@ >> : right shift

z=x&y
@ apply operator /\ (Boolean AND) to pairs of bits
Q@ Z; = Xq AN Vi (12031)
@ 0N0=0, 0A1=0, 1N0=0, 1N1=1

>
|

= 0..[0[1111100
y = 1..[1/0101001

x&y = 0..[0]0101000

Think of int x as a 32-bit sequence: x31..X1Xg
Xo: least-significant bit, x31: most-significant bit

z = "x
@ invert bits (0->1 1->0)
@ zZi = TXji (12031)

i
|

= 0..[0]1010110
“x = 1..[1]0101001

>
|

z=x1|y
@ apply operator V (Boolean OR) to pairs of bits
@ Z; = Xq V Vi (12031)
eO0V0=0,0V1=0,1V0=0,1V1=1

= 0..[0/1111100
y = 1..[1/0101001

x|y = 1..[1jt111101

>
|

z=x"y

@ apply operator @ (Boolean XOR) to pairs of bits z=x<<Kk

@z =x ¢ y; (1=0.3D) @ shift all bits in x k places to the left and set k

e 000=0001=1100=1,101=0 least-significant bits to 0 (0 < k < 32)

@ k most-significant bits are lost
x = 0..[0]1111100 @z =% (i=0.31—Kk), z..2,..1 =0
y =1..[1jo101001 X << 1 =xx2

x"y = 1..[1]1010101 x = 0..01011111 x = 0..00001011111
N.B.: Don't confuse x~y (XOR) with x¥ (exponentiation)! There is x<<1 = 0..10111110 x<<3 = 0..01011111000
no exponentiation operator in C++ (have to use pow(x,y) function

call instead).

Z = x>k

@ shift all bits in x k places to the right (0 < k < 32) int a, b, c, f:

@ k least-significant bits are lost .

i o] a = a & Oxff; // clears all but the lowest 8 bits

@ x unsigned: clear k most-significant bits // (0&0=0, 0&1=0, 1&0=0, 1&1=1)

® X Signed: clone mOSt'Signiﬁcant bit k times b=b | 5 // sets the lowest and third lowest bit in b

ez = x (1=k.3D), Z31..23-x = 0 Or X3 // (0l0=0, 0l1=1, 1]0=1, 1]1=1)

@ unsignedx >> 1 = x / 2 ¢ = c °~ Oxffff0000; // inverts the highest 16 bits in c

// (070=0, 0~1=1, 1°0=1, 1°1=0)
unsigned x: signed x: £ ="t // negates all bits in f
// ~0=Oxffffffff, ~0x55555555=0

x = 11..10111 x = 11..10111 - - B

x>>3 = 00011..10 x>>3 = 11111..10

#include <iostream>

using namespace std; #include <iostream>
using namespace std;
// write number in octal format to standard output
// write k-th least-significant bit of x to standard output
int main()
{ int main()
unsigned char n = 65; // 8-bit unsigned integer {
int 40, d1, d42; unsigned int x = 257, k = 8;
bool bit = (x & (1 << k)); // shift 1 left to k-th position
d0o =n & 7; // all bits but the lowest 3 set to O // and mask all other bits out
dl = (n > 3) & 7; // middle 3-bit group of n
d2 = (n >> 6) & 7; // left 3-bit group of n cout << "bit " << k << " of " << x << " = " << bit << endl;
}
cout << "octal(" << n << ") = " << d2 << dl << dO0 << endl;
by output: bit 8 of 257 = 1

output: octal(65) = 101

