
Practical Programming Methodology
(CMPUT-201)

Michael Buro

Lecture 2

Getting started

UNIX file system

Lecture 2 : Overview 1 / 14

Getting Started

Two ways of accessing a UNIX computer:

1 Sitting in front of it and typing in a command
window

2 Connecting to it from a remote machine using ssh
(“secure shell”)

ssh ug01.cs.ualberta.ca

Both require you to provide a userid and password

Lecture 2 : Getting Started 2 / 14

Command Shell

In interactive mode, command line interface (text
window with keyboard attached to it) e.g. “xterm”
Issue operating system or internal shell commands
directly via keyboard input; e.g.

I ls (list directory contents) ls -lrt
I cd (change directory) cd workdir
I mv (move/rename) mv old-file new-file
I mkdir (create directory) mkdir AS1
I cp (copy file or directory) cp -r dir backup
I rm (remove file or directory) rm -rf dir
I cat (display file) cat text
I echo (display string) echo hello
I exit (quit shell) exit
I man (command info) man man

Lecture 2 : Shell 3 / 14

UNIX File System

Data is stored in file systems which are usually located on harddisks

Persistent: data not lost when computer is switched off (unlike
RAM)

Hierarchical structure (tree)

/ represents the root directory

Directories (“folders”) can contain other directories and files
(internal nodes)

Files (leaves) are just sequences of bytes

Files/directories are uniquely located by a directory path. E.g.
/home/user/AS1/foo.c

/ is also used as directory separator

Lecture 2 : Shell 4 / 14

Shell continued

Special directories:

I / root directory, everything is stored beneath
I . current directory cp ./foo ./bar = cp foo bar
I .. parent directory cd ../.. : 2 levels up
I ~ home directory cd ~/foo

Command history/editing
I use arrow keys to navigate, <delete> or <backspace>

keys to remove characters

Simple programming language
I variables, functions, command aliases

Startup code in ~/.bashrc (when shell=bash)
I customizations! function ll() { ls -l "$@"; }

Lecture 2 : Shell 5 / 14

Launching Programs

Type program name (+ parameters) and hit the return key
<ret>

ls<ret>

emacs foo.c<ret>

Shell interprets the first word as command name and tries to
locate a function definition with this name (see ~/.bashrc).
If this fails it searches in the directories listed in variable $PATH

(try echo $PATH)

To detach program from terminal to run it in background type

command &<ret> (= command<ret><ctrl-z>bg<ret>)

Lecture 2 : Shell 6 / 14

Wildcards

* matches all strings
? matches one character

Examples:

wc *.c

count the words in all files with names that end with
.c

ls foo?bar

list all filenames that start with foo, followed by an
arbitrary character and bar

Lecture 2 : Shell 7 / 14

Hidden Files

Files with names starting with . are hidden, they are not
listed nor matched by wildcards

This is why ls does not show . nor ..

Useful for avoiding clutter (e.g. many .*rc files in ~)

ls -a reveals them

Lecture 2 : Shell 8 / 14

Filename Completion

Many shells have a filename completion feature: when
hitting the <tab> key the shell tries to complete the
filename. Saves typing!

cat super<tab>

will complete the command to

cat supercalifragilisticexpialidocious

if this is the only filename starting with super

Lecture 2 : Shell 9 / 14

Input/Output Redirection

Output of programs can be stored in a file using >:

cat file1 file2 > file3

[Writes contents of files file1 and file2 to file3]

Generates error message if file3 already exists

Use >! to override

cat > foo [copy keyboard input ended by <ctrl-d> to file foo]

Input can also be redirected:

grep foo < text [Display all lines in file text that contain foo]

Or both: sort < file > file.sorted

Lecture 2 : Shell 10 / 14

Pipes

Powerful UNIX feature: output of commands can
become input for subsequent commands

grep aaa file | wc -l

[count the number of lines in file that contain aaa]

sort file | uniq | wc -l

[count the number of unique lines in file]

Lecture 2 : Shell 11 / 14

Edit Textfiles

Many good editors exist: emacs, vi, vim, ...

emacs is very powerful

Type emacs x <ret> to edit file x

Large number of commands bound to keys. E.g.
I <ctrl-x> <ctrl-s> : save buffer
I <ctrl-x> <ctrl-f> : load file
I <ctrl-x> <ctrl-c> : exit
I <ctrl-s> : search
I <alt-%> : search and replace
I <ctrl-x> 2 : split window; <ctrl-x> o : switch buffer
I <alt-x> command : launch external commands such as gdb, gnus

man emacs, emacs reference cards, emacs tutorial
(in help menu or on the web)

Highly customizable: emacs ~/.emacs

Lecture 2 : Emacs 12 / 14

More Details

Lab 1: UNIX commands

Lab 2: Shell programming and emacs

Lecture 2 : Emacs 13 / 14

First C++ Program

Create file hello.C using emacs and save it

// this program prints "hello world" to standard output
#include <iostream>
using namespace std;

int main()
{
cout << "hello world" << endl;
return 0;

}

g++ -o hello hello.C generates executable
hello which prints hello world after being
invoked by issuing ./hello

Without the -o hello option, g++ creates
executable file a.out

Lecture 2 : Hello World 14 / 14

