
Practical Programming Methodology
(CMPUT-201)

Michael Buro

Lecture 1

Introduction to the course

Computer architecture

Lecture 1 : Introduction 1 / 18

General Course Information

Section home page:
I www.cs.ualberta.ca/∼mburo/courses/201
I news, schedule, lecture notes, and additional material

Course news group:

I ualberta.courses.cmput.201
I You can ask general 201 questions here

My E-mail: mburo@cs.ualberta.ca

Office: Athabasca Hall 3-37

Office Hours: Wednesdays 2-2:30pm or by
appointment

Lecture 1 : Introduction 2 / 18

Course Work

11 Assignments (weekly) 33%

Midterm exam (Feb. 16) 21%

12 Labs (Lab exam in week 11) 10%

Final exam (TBA) 36%

Average weekly workload you can expect:

≈5h Lectures + ≈3h Lab + ≈1-3h Assignment =
≈9–11h

Final grades: 4-point scale, distribution method

Lecture 1 : Introduction 3 / 18

Lectures

Attending is essential!

Notes will be posted on course webpage after
lectures

Lecture notes of the W2005 course are available

Differences: more emphasis on UNIX, tools, and C
— less on advanced C++ features

Lecture 1 : Introduction 4 / 18

Assignments

Crucial: Deepen the understanding of lecture
material!
5–7 small-medium problems/programming exercises
each
Released weekly on Tuesdays
Solutions have to be handed in by the following
Tuesday 12:30p in class and/or electronically using
the “astep” system
Will be marked by TAs and discussed in the labs a
week later

Solving assignments problems individually is the best way
to learn!

Exam questions will be similar
Lecture 1 : Introduction 5 / 18

Labs

Important!

TAs present assignment solutions

Mini-tutorials given by TAs

Unmarked hands-on exercises, TAs help

Lab exam in week 11 will test your ability to write
and debug C/C++ code

Apply for UNIX account in CSC-143 this week

Labs start next week

Exams and assignments will also cover lab material

Lecture 1 : Introduction 6 / 18

Collaboration and Cheating Policy

Discussing assignments among students is allowed!
Programming is a team endeavour after all!

Students must submit individual solutions and be
able to explain their solutions.

All sources — including books, webpages, and
names of fellow students who took part in
assignment discussions — need to be stated.
Failure to do so constitutes plagiarism

We use various plagiarism detection tools to
compare submitted assignment solutions

Lecture 1 : Introduction 7 / 18

Software Engineering Courses

201: Small-scale programming
I learn about UNIX/C/C++ and software libraries
I get familiar with software development tools
I know what goes on “under the hood”
I design and implement interfaces and small programs
I learn to appreciate software testing and defensive

programming

301: Team work, object-oriented design

401: Large-scale programming

Lecture 1 : Introduction 8 / 18

CMPUT-201 Topics

1 The UNIX operating system, tools [1.5 weeks]

I computer architecture, file system, commands
I shell, text editor, customizations

2 Procedural Programming (C/C++) [5.5 weeks]

I simple types, flow control, functions
I arrays, pointers, structs, memory management
I compiler, makefiles, debugger, profiler

3 Object Oriented Programming (C++) [3 weeks]
I classes, operator overloading
I inheritance

4 Generic Programming (C++) [2.5 weeks]
I templates
I Standard Template Library (STL)

Lecture 1 : Introduction 9 / 18

How to succeed in CMPUT-201?

“Learning by doing”

Don’t hesitate to play around – it’s hard to do any
permanent damage if you create backups or use a
version control system

Write small programs to test new concepts

Learn to find answers for yourself

I Textbooks
I man and web pages
I Google compiler error messages

Learn to use a debugger

Lecture 1 : Introduction 10 / 18

How to fail/drown in CMPUT-201?

Skipping lectures or labs

Ignoring assignments or copying fellow students’
solutions

Not taking advantage of asking questions in labs

Starting with programming prior to thinking about
the problem and trying to make programs work by
applying random changes

Wasting considerable time by not learning how to
use a debugger

Lecture 1 : Introduction 11 / 18

Typical PC Mainboard

Lecture 1 : Introduction 12 / 18

Schematic Design of a Personal Computer

ROM

CPU = Central Processing Unit
ROM = Read-Only Memory

RAM = Random Access Memory

Lecture 1 : Introduction 13 / 18

Central Processing Unit (CPU)

Lecture 1 : Introduction 14 / 18

von Neumann Architecture

R0
R1
...
Rn

1
2

Program Counter PC
LD 1, R1

0

93

239
92

JMP 1003

ST R1, 1
R1 := R1 + 1

1003

42
235
3

Data

Machine Program

CPU

Memory
(sequence of bytes)

0
1

0
1

(Assembly Language)

Register File

ALU

Lecture 1 : Introduction 15 / 18

Software/Hardware Layers

CPUs

Operating System

Libraries
User Programs

Devices Memory

CMPUT201

CMPUT379

CMPUT229

Lecture 1 : Introduction 16 / 18

Part 1: The UNIX Operating System, Shell, Editor

Why UNIX?

Open standards (e.g. POSIX threads)

Dominant server operating system

Free versions available (FreeBSD, OpenBSD, Linux)

Many free software development tools:
gcc, emacs, gmake, gprof, gdb, kdevelop, etc.

Multi-tasking (multiple programs can run at the
same time) / multi-user (multiple users can work on
one machine) operating system

We will be using GNU/Linux in the labs

Lecture 1 : UNIX 17 / 18

GNU/Linux

I highly recommend to administer your own Linux system
at home. There are many freely downloadable distribu-
tions. E.g.

Redhat Fedora Core
www.redhat.com/fedora

Frequent updates. Stable.
Requires one or two partitions on your harddisk.

Knoppix live CD/DVD
www.knopper.net/knoppix/index-en.html

Does not require any changes in your setup!
Great for checking Linux out.

Lecture 1 : UNIX 18 / 18

