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Abstract

Training agents using Reinforcement Learning in games with
sparse rewards is a challenging problem, since large amounts
of exploration are required in order to receive a single reward.
To tackle this problem, a common approach is to use reward
shaping to help exploration. However, an important drawback
of reward shaping is that agents sometimes learn to optimize
the shaped reward instead of the true objective. In this pa-
per, we present a novel technique that we call action guid-
ance that successfully trains agents to eventually optimize the
true objective in games with sparse rewards yet does not lose
the sampling efficiency that comes with reward shaping. We
evaluate our approach in a simplified real-time strategy (RTS)
game simulator called µRTS.

Introduction
Training agents using Reinforcement Learning with sparse
rewards is often difficult. First, due to the sparsity of the re-
ward, the agent often spends the majority of the training time
doing inefficient exploration and sometimes not even reach-
ing the first sparse reward during the entirety of its training.
Second, even if the agents have successfully retrieved some
sparse rewards, performing proper credit assignment is chal-
lenging among complex sequences of actions that have led
to theses sparse rewards. Reward shaping (Ng, Harada, and
Russell 1999) is a widely-used technique designed to mit-
igate this problem. It works by providing intermediate re-
wards that lead the agent towards the sparse rewards, which
are the true objective. For example, the sparse reward for a
game of Chess is naturally +1 for winning, -1 for losing, and
0 for drawing, while a possible shaped reward might be +1
for every enemy piece the agent takes. One of the critical
drawbacks for reward shaping is that the agent sometimes
learns to optimize for the shaped reward instead of the real
objective. Using the Chess example, the agent might learn
to take as many enemy pieces as possible while still losing
the game. A good shaped reward achieves a nice balance
between letting the agent find the sparse reward and being
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too shaped (so the agent learns to just maximize the shaped
reward), but this balance can be very difficult to find.

In this paper, we present a novel technique called action
guidance that successfully trains the agent to eventually op-
timize over sparse rewards yet does not lose the sampling
efficiency that comes with reward shaping. It works by con-
structing a main agent that only learns from the sparse re-
ward function RM and some auxiliary agents that learn
from the shaped reward function RA1

, RA2
, . . . , RAn . Dur-

ing the initial stage of the training, the main agent has a
high probability to take action guidance from the auxiliary
agent, that is, the main agent will likely execute actions sam-
pled from the auxiliary agents. The main agent and auxil-
iary agents are updated via off-policy policy gradient. As
the training goes on, the main agent will get more indepen-
dent and execute more actions sampled from its own pol-
icy. Auxiliary agents learn from shaped rewards and there-
fore make the training sample-efficient, while the main agent
learns from the sparse rewards and therefore makes sure that
the agents will eventually optimize over the true objective.
Action guidance therefore gets the best of both worlds.

We examine action guidance in the context of a real-time
strategy (RTS) game simulator called µRTS for three sparse
rewards tasks of varying difficulty. For each task, we com-
pare the performance of training agents with the sparse re-
ward function RM, a shaped reward function RA1

, and ac-
tion guidance with a singular auxiliary agent learning from
RA1

. Here is a list of highlights of our proposed technique:

1. The agent learns in the full action space. Some of our
settings mirror previous work in Hierarchical Reinforce-
ment Learning (HRL) (Dietterich 2000). However, HRL
approaches usually have a master policy whose action
space is the selection of sub-policies. In contrast, our main
agent learns in the entire action space and could theoret-
ically learn action combinations that are not captured by
even a well-tuned hierarchical action space.

2. Action guidance is sample-efficient. Since the auxiliary
agent learns from RA1

and the main agent takes action
guidance from the auxiliary agent during the initial stage
of training, the main agent is more likely to discover
the first sparse reward more quickly and learn more ef-
ficiently. Empirically, action guidance reaches almost the



(a) shaped reward, t = 6000 (b) action guidance, t = 440

Figure 1: The screenshot shows the typical learned behav-
ior of agents in the task of DefeatRandomEnemy, where the
desired goal is to win the game (destroying all enemy units
and buildings) as fast as possible. Figure 1a shows that an
agent trained with some shaped reward function RA1

learns
many helpful behaviors such as building workers, combat
units, and buildings or attacking enemy units, but does not
learn to win as fast as possible (i.e. it still does not win at
internal time step t = 6000). In contrast, Figure 1b shows
an agent trained with action guidance optimizes over the
match outcome and learns to win as fast as possible (i.e.
about to win the game at t = 440), with its main agent
learning from the match outcome reward function RM and
a singular auxiliary agent learning from the same shaped re-
ward function RA1

. See the full videos for Figure 1a and
Figure 1b at https://youtu.be/UM88KyBLQzM and https:
//youtu.be/arsDaIq4B38.

same level of sample efficiency as reward shaping in all
of the three tasks tested.

3. The true objective is being optimized. During the course
of training, the main agent has never seen the shaped re-
wards. This ensures that the main agent, which is the
agent we are really interested in, is always optimizing
against the true objective and is less biased by the shaped
rewards. As an example, Figure 1 shows that the agents
trained with action guidance eventually learn to win the
game as fast as possible, which is superior to the behav-
iors learned by the agents trained with the shaped reward
function.
In light of recent reproducilibility issues, we make our

source code available at GitHub1. and upload the metrics,
logs, and recorded videos to Weights and Biases2.

The remaining of this paper is organized as follows. In
the next section, we will present related work and necessary
background. Then, we present action guidance, experimen-
tal setup, and discussion of our results. The paper closes with
conclusions and potential future work.

Related Work
In this section, we briefly summarize the popular techniques
proposed to address the challenge of sparse rewards.

1https://github.com/vwxyzjn/action-guidance
2https://app.wandb.ai/vwxyzjn/action-guidance

Reward Shaping. Reward shaping is a common tech-
nique where the human designer uses domain knowledge to
define additional intermediate rewards for the agents. Ng,
Harada, and Russell (1999) show that a slightly more re-
stricted form of state-based reward shaping has better theo-
retical properties for preserving the optimal policy.

Transfer and Curriculum Learning. Sometimes learn-
ing the target tasks with sparse rewards is too challenging,
and it is more preferable to learn some easier tasks first.
Transfer learning leverages this idea and trains agents with
some easier source tasks and then later transfer the knowl-
edge through value function (Taylor, Stone, and Liu 2007)
or reward shaping (Svetlik et al. 2017). Curriculum learning
further extends transfer learning by automatically designing
and choosing a full sequences of source tasks (i.e. a curricu-
lum) (Narvekar and Stone 2018).

Imitation Learning. Alternatively, it is possible to di-
rectly provide examples of human demonstration or ex-
pert replay for the agents to mimic via Behavior Cloning
(BC) (Bain and Sammut 1995), which uses supervised learn-
ing to learn a policy given the state-action pairs from ex-
pert replays. Alternatively, Inverse Reinforcement Learning
(IRL) (Abbeel and Ng 2004) recovers a reward function
from expert demonstrations to be used to train agents.

Curiosity-driven Learning. Curiosity driven learning
seeks to design intrinsic reward functions (Burda et al.
2019) using metrics such as prediction errors (Houthooft
et al. 2016) and “visit counts” (Bellemare et al. 2016;
Lopes et al. 2012). These intrinsic rewards encourage the
agents to explore unseen states.

Goal-oriented Learning. In certain tasks, it is possible
to describe a goal state and use it in conjunction with the
current state as input (Schaul et al. 2015). Hindsight expe-
rience replay (HER) (Andrychowicz et al. 2017) develops
better utilization of existing data in experience replay by re-
playing each episode with different goals. HER is shown to
be an effective technique in sparse rewards tasks.

Hierarchical Reinforcement Learning (HRL). If the
target task is difficult to learn directly, it is also possible
to hierarchically structure the task using experts’ knowl-
edge and train hierarchical agents, which generally involves
a main agent that learns abstract goals, time, and actions,
as well as auxiliary agents that learn primitive actions and
specific goals (Dietterich 2000). HRL is especially popular
in RTS games with combinatorial action spaces (Pang et al.
2019; Ye et al. 2020).

The most closely related work is perhaps Scheduled Aux-
iliary Control (SAC-X) (Riedmiller et al. 2018), which is an
HRL algorithm that trains auxiliary agents to perform prim-
itive actions with shaped rewards and a main agent to sched-
ule the use of auxiliary agents with sparse rewards. How-
ever, our approach differs in the treatment of the main agent.
Instead of learning to schedule auxiliary agents, our main
agent learns to act in the entire action space by taking action
guidance from the auxiliary agents. There are two intuitive
benefits to our approach since our main agent learns in the
full action space. First, during policy evaluation our main
agent does not have to commit to a particular auxiliary agent
to perform actions for a fixed number of time steps like it is

https://youtu.be/UM88KyBLQzM
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usually done in SAC-X. Second, learning in the full action
space means the main agent will less likely suffer from the
definition of hand-crafted sub-tasks, which could be incom-
plete or biased.

Background
We consider the Reinforcement Learning problem
in a Markov Decision Process (MDP) denoted as
(S,A, P, ρ0, r, γ, T ), where S is the state space, A is
the discrete action space, P : S×A×S → [0, 1] is the state
transition probability, ρ0 : S → [0, 1] is the the initial state
distribution, r : S × A → R is the reward function, γ is
the discount factor, and T is the maximum episode length.
A stochastic policy πθ : S × A → [0, 1], parameterized
by a parameter vector θ, assigns a probability value to an
action given a state. The goal is to maximize the expected
discounted return:

Eτ∼πθ

[
T−1∑
t=0

γtrt

]
,

where τ is the trajectory (s0, a0, . . . , sT−1, aT−1, rT−1) fol-
lowing πθ, and s0 ∼ ρ0, st ∼ P (·|st−1, at−1), at ∼
πθ(·|st), rt = r (st, at). The notation P (·|st−1, at−1) repre-
sents the state transition distribution given the previous state
st−1 and action at−1, and the notation st ∼ P (·|st−1, at−1)
represents that the state st visited at time t is sampled
from P (·|st−1, at−1). Similarly, πθ(·|st) represents the ac-
tion distribution given state st, and at ∼ πθ(·|st) means the
action at at time t is sampled from πθ(·|st).

Policy Gradient Algorithms. The core idea behind policy
gradient algorithms is to obtain the policy gradient ∇θJ of
the expected discounted return with respect to the policy pa-
rameter θ. Doing gradient ascent θ = θ + ∇θJ therefore
maximizes the expected discounted reward. Earlier work
proposes the following policy gradient estimate to the ob-
jective J (Sutton and Barto 2018):

gpolicy,θ = Eτ∼πθ [∇θ log πθ(at|st)Gt]

= Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at|st)Gt

]
,

where Gt =
∑∞
k=0 γ

krt+k denotes the discounted return
following time t. This gradient estimate, however, suffers
from large variance (Sutton and Barto 2018) and the follow-
ing gradient estimate is suggested instead:

gpolicy,θ = Eτ

[
∇θ

T−1∑
t=0

log πθ(at|st)A(τ, V, t)

]
,

where A(τ, V, t) is the General Advantage Estimation
(GAE) (Schulman et al. 2015), which measures “how good
is at compared to the usual actions”, and V : S → R is the
state-value function.

Action Guidance
The key idea behind action guidance is to create a main
agent that trains on the sparse rewards, and creating some
auxiliary agents that are trained on shaped rewards. During
the initial stages of training, the main agent has a high proba-
bility to take action guidance from the auxiliary agents, that
is, the main agent can execute actions sampled from the aux-
iliary agents, rather than from its own policy. As the training
goes on, this probability decreases, and the main agent exe-
cutes more actions sampled from itself. During training, the
main and auxiliary agents can be updated via off-policy pol-
icy gradient. Our use of auxiliary agents makes the train-
ing sample-efficient, and our use of the main agent, who
only sees its own sparse reward, makes sure that the agent
will eventually optimize over the true objective of sparse
rewards. In a way, action guidance can be seen as train-
ing agents using shaped rewards, and having the main agent
learn by imitating from them.

Specifically, let us define M as the MDP that the main
agent learns from andA = {A1,A2, ...,Ak} be a set of aux-
iliary MDPs that the auxiliary agents learn from. In our con-
structions,M and A share the same state, observation, and
action space. However, the reward function for M is RM,
which is the sparse reward function, and reward functions
for A are RA1

, ..., RAk , which are the shaped reward func-
tions. For each of these MDPs E ∈ S = {M} ∪ A above,
let us initialize a policy πθE parameterized by parameters θE ,
respectively. Furthermore, let us use πS = {πθE |E ∈ S} to
denote the set of these initialized policies.

At each timestep t, let us use some exploration strategy S
that selects a policy πb ∈ πS to sample an action at given
st. At the end of the episode, each policy πθE ∈ πS can
be updated via its off-policy policy gradient (Degris, White,
and Sutton 2012; Levine et al. 2020):

Eτ∼πθb

[(
T−1∏
t=0

πθE (at|st)
πθb (at|st)

)
T−1∑
t=0

∇θ log πθE (at|st)A(τ, V, t)

]
(1)

When πθE = πθb , the gradient in Equation 1 means on-
policy policy gradient update for πθE . Otherwise, the objec-
tive means off-policy policy gradient update for πθE . Notice
the exploration strategy S could have a significant impact on
the performance. If, for example, we always sample actions
from the main agent (i.e. at ∼ πθM(·|st)), then the main
agent will receive no action guidance at all from the aux-
iliary agent and likely to have bad performance; and if we
always sample the action from the auxiliary agent, then the
main agent will have no chance to optimize over the true ob-
jective. A possible exploration strategy S might be to spend
some initial fraction (e.g. 30%) of the entire training time
with a high probability (e.g. 95%) of sampling actions from
the auxiliary agents, and then decrease this probability over
time all the way to 0%, thus giving the full autonomy back
to the main agent to optimize over the true objective.

Practical Objective and Exploration Strategy
The gradient in Equation 1 is unbiased, but its product of
importance sampling ratio

(∏T−1
t=0

πθ(at|st)
πθb (at|st)

)
is known to

cause high variance (Wang et al. 2016). In practice, we



Table 1: Observation features and action components.

Observation Fea-
tures

Planes Description

Hit Points 5 0, 1, 2, 3, ≥ 4
Resources 5 0, 1, 2, 3, ≥ 4
Owner 3 player 1, -, player 2
Unit Types 8 -, resource, base, bar-

rack,worker, light,
heavy, ranged

Current Action 6 -, move, harvest, return,
produce, attack

Action Compo-
nents

Range Description

Source Unit [0, h× w − 1] the location of unit se-
lected to perform an ac-
tion

Action Type [0, 5] NOOP, move, harvest,
return, produce, attack

Move Parameter [0, 3] north, east, south, west
Harvest Parame-
ter

[0, 3] north, east, south, west

Return Parameter [0, 3] north, east, south, west
Produce Direction
Parameter

[0, 3] north, east, south, west

Produce Type Pa-
rameter

[0, 5] resource, base, barrack,
worker, light, heavy,
ranged

Attack Target
Unit

[0, h× w − 1] the location of unit that
will be attacked

clip the gradient the same way as Proximal Policy Gradient
(PPO) (Schulman et al. 2017):

Eτ∼πθb

[
T−1∑
t=0

[∇θmin (ρt(θ)A(τ, V, t), clip (ρt(θ), ε)A(τ, V, t))]

]

ρt(θ) =
πθ (at|st)
πθ0 (at|st)

, clip (ρt(θ), ε) =


1− ε if ρt(θ) < 1− ε
1 + ε if ρt(θ) > 1 + ε

ρt(θ) otherwise

In addition, we use ε-greedy as the exploration strategy S
for determining the behavior policy. That is, at each timestep
t, the behavior policy is selected to be πθM with probability
1− ε and πθD for D ∈ A with probability ε. Additionally, ε
is set to be a constant %95 at start for some period of time
steps (e.g. 800,000), which we refer to as the shift period (the
time it takes to start “shifting” focus away from the auxiliary
agents), then it is set to linearly decay to εend for some pe-
riod of time steps (e.g. 1,000,000), which we refer to as the
adaptation period (the time it takes for the main agent to
fully “adapt” and become more independent).

Positive Learning Optimization (PLO)
During our initial experiments, we found the main agent
sometimes did not learn useful policies. Our hypothesis is
that this was because the main agent is updated with too
many trajectories with zero reward. Doing a large quantities
of updates of these zero-reward trajectories actually causes

the policy to converge prematurely, which is manifested by
having low entropy in the action probability distribution.

To mitigate this issue, we use a simple code-level op-
timization called Positive Learning Optimization (PLO). It
works by skipping the gradient update for πθE ∈ πS if the
current trajectory contains no reward according to RE . In-
tuitively, PLO makes sure that the main agent learns from
meaningful experience that is associated with positive re-
wards.

Evaluation Environment
We use µRTS3 as our testbed, which is a minimalistic RTS
game maintaining the core features that make RTS games
challenging from an AI point of view: simultaneous and du-
rative actions, large branching factors and real-time decision
making. To interface with µRTS, we use gym-microrts to
conduct our experiments (Huang and Ontañón 2020). We
now present the technical details of environment formula-
tion for our experiments.
• Observation Space. Given a map of size h × w, the ob-

servation is a tensor of shape (h,w, nf ), where nf is a
number of feature planes that have binary values. The ob-
servation space used in this paper uses 27 feature planes
as shown in Table 1. A feature plane can be thought of
as a concatenation of multiple one-hot encoded features.
As an example, if there is a worker with hit points equal
to 1, not carrying any resources, owner being Player 1,
and currently not executing any actions, then the one-hot
encoding features will look like the following:

[0, 1, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0]

The 27 values of each feature plane for the position in the
map of such worker will thus be:

[0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]

• Action Space. Given a map of size h × w, the action is
an 8-dimensional vector of discrete values as specified in
Table 1. The first component of the action vector repre-
sents the unit in the map to issue actions to, the second is
the action type, and the rest of components represent the
different parameters different action types can take.

Tasks Description
We examine the three following sparse reward tasks with
a range of difficulties. For each task, we compare the per-
formance of training agents with the sparse reward function
RM, a shaped reward function RA1

, and action guidance
with a single auxiliary agent learning from RA1 .

1. LearnToAttack:

(a) RM: The agent will get a +1 reward for each valid at-
tack action it issues. This is sparse reward because it re-
quires agents to learn to attack the enemy base and one
worker stationary at the other side of the map, which
consists of long sequence of actions with no intermedi-
ate rewards.

3https://github.com/santiontanon/microrts

https://github.com/santiontanon/microrts


(a) shaped reward, t = 1410 (b) action guidance, t = 890

Figure 2: The screenshot shows the typical learned behav-
ior of agents in the task of ProduceCombatUnits. Figure 2a
shows an agent trained with shaped reward function RA1

learn to only produce combat units once the resources are
exhausted (i.e. it produces three combat units at t = 1410).
In contrary, Figure 1b shows an agent trained with action
guidance learn to produce units and harvest resources con-
currently (i.e. it produces three combat units at t = 890) See
the full videos for Figure 2a and Figure 2b at https://youtu.
be/MB0FjW-3Ktc and https://youtu.be/MB0FjW-3Ktc.

(b) RA1 : The agent will get the difference between pre-
vious and current Euclidean distance between the en-
emy base and its closet unit owned by the agent as the
shaped reward in addition to RM.

2. ProduceCombatUnits:

(a) RM: The agent will get a +1 reward for each com-
bat unit produced. This is a more challenging task be-
cause the agent needs to learn 1) harvest resources
when, 2) produce barracks, 3) produce combat units
once enough resources are gathered, 4) move produced
combat units out of the way so as to not block the pro-
duction of new combat units.

(b) RA1
: The agent will get +1 for constructing every

building (e.g. barracks), +1 for harvesting resources,
and +7 for each combat unit it produces.

3. DefeatRandomEnemy:

(a) RM: The agent will get the match outcome as the re-
ward (-1 on a loss, 0 on a draw and +1 on a win). This is
the most difficult task we examined because the agent
is subject to the full complexity of the game, being
required to make both macro-decisions (e.g. deciding
the high-level strategies to win the game) and micro-
decisions (e.g. deciding which enemy units to attack.

(b) RA1 : The agent will get +5 for winning, +1 for harvest-
ing one resource, +1 for producing one worker, +0.2 for
constructing every building, +1 for each valid attack ac-
tion it issues, +7 for each combat unit it produces, and
+(0.2 ∗ d) where d is difference between previous and
current Euclidean distance between the enemy base and
its closet unit owned by the agent.

Experimental Setup
Agent Setup
We use PPO (Schulman et al. 2017) as the base DRL algo-
rithm to incorporate action guidance. Our PPO implementa-
tion uses many common code-level optimizations found in
openai/baselines (Dhariwal et al. 2017); a full list of which
can be found in the Appendix A of the work by Huang and
Ontañón (2020).

The input to the neural network of PPO is a tensor of
shape (10, 10, 27). The first hidden layer convolves 16 3× 3
filters with stride 2 with the input tensor and applies a recti-
fier nonlinearity (Nair and Hinton 2010). The second hidden
layer similarly convolves 32 2×2 filters with stride 1 and ap-
plies a rectifier nonlinearity. The final hidden layer is a fully
connected linear layer consisting of 128 rectifier units. The
policy output layer is a fully connected linear layer with 236
number of output, from which the source unit, target unit,
action type and parameters in Table 1 are extracted, and the
value output layer is a fully connected linear layer with sin-
gle scalar output. We compared the following strategies:

1. Shaped reward. This agent is trained with PPO on RA1

for each task.

2. Sparse reward. This agent is trained with PPO on RM
for each task.

3. Action guidance - long adaptation. The agent is trained
with PPO + action guidance with shift = 2, 000, 000 time
steps, adaptation = 7, 000, 000 time steps, and εend =
0.0

4. Action guidance - short adaptation. The agent is trained
with PPO + action guidance with shift = 800, 000 time
steps, adaptation = 1, 000, 000 time steps, and εend =
0.0

5. Action guidance - mixed policy The agent is trained
with PPO + action guidance with shift = 2, 000, 000
time steps and adaptation = 2, 000, 000 time steps, and
εend = 0.5. We call this agent “mixed policy” because it
willl eventually have %50 chance to sample actions from
the main agent and %50 chance to sample actions form
the auxiliary agent. It is effectively having mixed agent
making decisions jointly.

Although it is desirable to add SAC-X to the list of strate-
gies compared, it was not designed to handle domains with
large discrete action spaces. Lastly, we also toggle the PLO
option for action guidance - long adaptation, action guid-
ance - short adaptation, and sparse reward training strategies
for a preliminary ablation study.

Experimental Results
Each of the 6 agents is evaluated in 3 tasks with 10 random
seeds. We report the results in Table 2.

Action guidance is almost as sample-efficient as re-
ward shaping. Since the auxiliary agent learns from RA1

and the main agent takes a lot of action guidance from the
auxiliary agent during shift, the main agent is more likely
to discover the first sparse reward more quickly and learn
more efficiently. As an example, Figure 3 demonstrates such

https://youtu.be/MB0FjW-3Ktc
https://youtu.be/MB0FjW-3Ktc
https://youtu.be/MB0FjW-3Ktc


Table 2: The average episode reward (according to RM) achieved by each training strategy in each task over 10 random seeds,
where we use “ag” as a shorthand for action guidance, “long” for long adaptation and “short” for short adaptation.

ag ag ag - ag - sparse sparse shaped ag -
long long short short reward reward reward mixed policy

w/ PLO w/ PLO w/ PLO w/ PLO

LearnToAttack 11.00 11.00 11.00 11.00 3.30 0.00 9.99 10.78
ProduceCombatUnit 8.31 6.96 2.95 9.48 0.00 0.00 9.57 9.36
DefeatRandomEnemy 0.11 0.57 -0.06 -0.06 -0.06 -0.06 0.08 0.29
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Figure 3: Faint lines are the actual episode reward of each
seed for selected strategies in ProduceCombatUnits; solid
lines are their means.

sample-efficiency in ProduceCombatUnits, where the agents
trained with sparse reward struggle to obtain the very first
reward. In comparison, most action guidance related agents
are able to learn almost as fast as the agents trained with
shaped reward.

Action guidance optimizes the sparse reward. This is
perhaps the most important contribution of our paper. Action
guidance optimizes the main agent over the true objective,
rather than optimizing shaped rewards. Specifically:

1. In the ProduceCombatUnits task, the agent trained with
shaped reward would only start producing combat units
once all the resources have been harvested. In contrast,
the agents trained with action guidance - short adapta-
tion would harvest resources and producing combat units
concurrently. Even though they gain similar shaped re-
wards, the latter behavior matches the common pattern
observed in professional RTS game players and is ob-
viously more desirable because should the enemy attack
early, the agents will have enough combat units to defend.

2. In the DefeatRandomEnemy task, we find the perfor-
mance of action guidance to be far superior. Figure 1
shows a typical example, where the agents trained with
shaped rewards learn a variety of behaviors due to the
brittleness of reward shaping, some of whom learn to do
a worker rush while others learn to focus heavily on har-
vesting resources and producing units. The agents trained
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action guidance - short adaptation w/ PLO

Figure 4: Faint lines are the actual episode reward of each
seed obtained by selected strategies in ProduceCombatU-
nits; solid lines are their means.

with action guidance - long duration, however, almost al-
ways learn to do a worker rush, which an efficient way to
win against a random enemy.

The hyper-parameters adaptation and shift matter.
Although the agents trained with action guidance - short
adaptation learns the more desirable behavior, they perform
considerably worse in the harder task of DefeatRandomEn-
emy. It suggests the harder that task is perhaps the longer
adaptation should be set. However, in ProduceCombatUnits,
agents trained with action guidance - long adaptation ex-
hibits the same category of behavior as agents trained with
shaped reward, where the agent would only start producing
combat units once all the resources have been harvested. A
reasonable explanation is that higher adaptation gives more
guidance to the main agents to consistently find the sparse
reward, but it also inflict bias on how the task should be ac-
complished; lower adaption gives less guidance but increase
the likelihood for the main agents to find better ways to op-
timize the sparse rewards.

Positive Learning Optimization results are inconclu-
sive. We found PLO to be an interesting yet sometimes
effective optimization in stabilizing the performance for
agents trained with action guidance. As a motivating ex-
ample, Figure 4 showcases the actual episode reward of 10
seeds in ProduceCombatUnits, where agents trained with
action guidance - short adaptation and PLO seem to al-



ways converge while agents trained without PLO would only
sometime converge. However, PLO does not always help.
For example, PLO actually hurt the performance of action
guidance - long adaptation in ProduceCombatUnits by hav-
ing a few seeds catastrophically forget as shown in Figure 3.

Action guidance - mixed policy is viable. According to
Table 2, agents trained with action guidance - mixed policy
seem to perform relatively well in all three tasks examined.
It appears we can consider the main agent and the auxiliary
agents as a whole entity that makes joint decision, somehow
collaborating to accomplish a certain goal.

Conclusions
In this paper, we present a novel technique called action
guidance that successfully trains the agent to eventually op-
timize over sparse rewards yet does not lose the sampling ef-
ficiency that comes with reward shaping, effectively getting
the best of both worlds. Our experiments with DefeatRan-
domEnemy in particular show it is possible to train a main
agent on the full game of µRTS using only the match out-
come reward, which suggests action guidance could serve as
a promising alternative to the training paradigm of AlphaS-
tar (Vinyals et al. 2019) that uses supervised learning with
human replay data to bootstrap an agent. As part of our fu-
ture work, we would like to scale up the approach to defeat
stronger opponents.
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