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Abstract 

Recently, multi-agent research systems have been used in the 
field of reinforcement learning to manage with cooperative 
agents. Simultaneously managing a large number of agents is 
challenging, so various approaches are being considered. 
Specifically, the application of high-dimension data method-
ologies is a significant challenge in the research of many-
agent problems, as complexity increases exponentially with 
the number of agents. Furthermore, policy convergence can 
be difficult as the contribution of each agent is unclear. In this 
work, we flexibly decomposed a multi-agent problem into 
sub-multi-agent tasks using a clustering method, and applied 
this technique to a hierarchical structure. After abstracting the 
movements of units through hierarchical approach, a group’s 
action space and micro-control tasks were mapped onto high- 
and low-level actions, respectively. We demonstrated our 
method through combat scenarios in the StarCraft video 
game. Our method successfully decomposed a complex 
multi-agent problem into homogeneous sub-tasks, and 
showed the advantage of making the training process effi-
cient and inexpensive. 

Introduction
   

In recent years, the field of reinforcement learning (RL) has 

developed remarkably, with applications being found in 

video games and real-world problems. Dealing with a single 

agent is the most important task in RL; and the primary chal-

lenge is in finding a balance between exploration and ex-

ploitation. Recent studies have focused on solving complex 

video game problems that are transferable to the real-world. 

In particular, long duration scenarios with unclear, delayed 

rewards (Kulkarni et al., 2016; Kaelbling, 1996; Bellemare 

et al 2016) are unavoidable problems for researchers, and 

the capacity to manage problems with high dimensionality 

is important. These problems persist, and continued research 

aiming to reduce dimensionality is critical if data-efficiency 

is to be increased. 
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Dealing with multiple agents has introduced a new chal-

lenge as the convergence of multi-agent problems in tradi-

tional scenarios is unreliable, which makes training difficult. 

Non-stationary concurrency problems occur when multiple 

agents are executed simultaneously (Hernandez-Leal et al., 

2017). Previous multi-agent studies have attempted to trans-

plant existing RL methods into a centralized paradigm (Tan, 

1993), and this approach has improved several multi-agent 

algorithms by increasing the collaboration between agents 

(Foerster et al., 2016). 

 As multi-agent methods have been applied to real-world 

applications, researchers have shown an increased interest 

in addressing problems with many agents. Most related 

works focus on the multi-agent credit assignment problem, 

which is concerned with reward distribution and devising a 

scalable architecture that is less-affected by the number of 

agents (Nguyen et al., 2018; Chang, Ho, and Kaelbling, 

2004). In this problem, the joint-action set increases with the 

number of agents, and the learning complexity increases ex-

ponentially when actions are combined.  

 A hierarchical framework was used to solve high-dimen-

sion multi-agent system problems. Several studies have re-

ported that action- and state-space abstraction are good 

methods for reducing learning complexity, which increases 

learning efficiency. Through this concept, we demonstrate 

that more flexible decomposition methods are required in 

sensitive applications, such as autonomous vehicles 

(Shalev-Shwartz et al., 2016), and traffic routing problems 

(Ye et al., 2015; Wiering et al., 2000). This was imple-

mented by substituting a grid-like method with a clustering 

algorithm for dynamic grouping. Following the work of 

(Stanescu and Buro, 2018), the agents’ action probabilities 

were spatially correlated which increased the elegance of 

macro-actions. 

 In the next section, we present a review of studies that 

have inspired our method. We then describe our proposed 

technique, which expands upon the hierarchical RL 
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framework meta-controller (Kulkarni et al., 2016). Experi-

mentally, this new system is demonstrated in three StarCraft 

combat scenarios (i.e., a representative multi-agent testbed 

was focused on cooperative formation), with a focus on 

many-agent cooperative formation, and we assess the effi-

ciency of our method compared to the vanilla multi-agent 

RL with qualitative discussion of each scenario. 

Related Work 

Exploration of high-dimension state spaces has been an im-

portant issue in deep-RL literature. Many studies examine 

effective exploration in complex video games with delayed 

and sparse reward signals. However, in multi-agent settings, 

training numerous agents is a challenging problem that pro-

duces high-dimension state spaces and many joint-action 

combinations. Much of the literature addresses high-dimen-

sion learning in single-agent RL fields where learning com-

ponents are decomposed with some examples. However, de-

composing a multi-agent problem necessitates consideration 

of agent-property homogeneity. In this section, we will ex-

amine the complexity of multi-agent RL when many agents 

are computed, and discuss studies that have attempted to de-

crease the learning dimensionality of multi-agent systems. 

Centralized Learning 

Training cooperative agents is an ongoing challenge in 

multi-agent reinforcement learning (MARL). Historically, 

tabular RL methods concentrated on single-agent frame-

works; however, these methods are insufficient for collabo-

rative tasks, as illustrated by independently executed agents 

that follow the Dec-POMDP framework (Oliehoek and Am-

ato, 2016). In response, Tan presented Independent Q-

Learning (IQL) that centralizes independent Q-functions for 

each agent, and shows that decentralized learning causes 

non-stationary problems owing to unstable convergence in 

multi-agent settings (Tan, 1993). The centralized learning 

concept formed the basis of a paradigm in multi-agent liter-

ature where a centralized Q-function, Q𝑡𝑜𝑡 was trained. This 

strategy is useful when solving non-stationary problems as 

partial observations of each agent are included during train-

ing.  

 The problem of multi-agent credit-assignment modulates 

the contribution of each agent considered in centralized 

learning. The significance of this effect increases with the 

number of joint-action sets, which complicates learning-

processes. This problem is well-studied in the multi-agent 

field.  

 Foerster et al. proposed COMA, a counterfactual based 

actor-critic method, to estimate fictitious individual rewards 

distributed from a team-reward signal (Foerster et al., 2018; 

Lowe et al., 2017). More elegantly, value decomposition 

network (VDN) represented optimal individual value func-

tion through back-propagation of the centralized 𝑄-function 

(Sunehag et al., 2018; Rashid et al., 2018). These methods 

are well-suited to solving the credit-assignment problem, as 

determining individual rewards through reward-shaping is 

inefficient and unrealistic in complex video games.  

Neural network structures have been designed to improve 

communication between agents operating with decentral-

ized execution. CommNet (Sukhbaatar et al., 2016) reported 

that a communication-specialized model, particularly one 

using recurrent neural networks (RNNs) (Hochreiter et al., 

1997; Cho et al., 2015), was well-suited to multi-agent prob-

lems. Furthermore, BiCNet (Peng et al., 2017) used bi-di-

rectional long short-term memory (LSTM) as a communica-

tion layer to exchange vectorized messages between units, 

and showed that it is scalable to an arbitrary number of 

agents. The aforementioned techniques are appropriate for a 

large number of agents; however, most multi-agent research 

focuses on the precise control of a small number of agents, 

so new techniques are required to move a large number of 

agents effectively. 

Temporal Abstraction 

When controlling many agents, large-scale maps increase 

dimensionality of exploration such that agent distribution 

can cause combinatorial explosion of the state-dimension, 

and increasing the joint-action set further complicates scala-

bility. 

 Hierarchical reinforcement learning (HRL) (Kulkarni et 

al., 2016; Pang et al., 2018; Ghavamzadeh et al., 2006) is a 

method for efficient RL exploration, which decomposes a 

training session into several steps. In particular, this tech-

nique is best applied to long-trajectory problems (e.g., a 

broad range of path planning problems). In multi-level HRL, 

high- and low-level policies teach abstracted actions for 

global- and local-range actions, respectively. The abstract-

ing process is focused on the modular learning component, 

and unnecessary details are eliminated. 

 In the MARL domain, temporal abstraction is useful for 

the formation of agents, and high-level decisions concen-

trate on their movement actions. Tang et al. utilized this 

structure in a three-player basketball game; players were lo-

cated with a high-level multi-agent policy, and replacing in-

dependent actions with single-agent policy (Tang et al., 

2018). This demonstrated that the low-level tasks executed 

by agents were homogeneous and, therefore, could be re-

placed with a single policy. To scale this problem for many 

agents, a large action space must be abstracted, and homo-

geneity of grouped agents assumed.  

Spatial Decomposition 

The abstraction of minor tasks for many-agent problems 

leads to improved performance and efficiency. Stanescu and 

Buro presented a concept for the decomposition of multi-

agent systems (Stanescu and Buro, 2018) that was demon-

strated in a many-agent environment (Zheng et al., 2017) 

and focused on the cooperative formation of agents. In their 

work, the action space was decomposed into multi-level 



layers using a HRL architecture. Specifically, a rectangular 

map  was divided into gridded sectors. This approach was 

successful due to the homogeneity nearby sectors, and this 

concept is applicable in most multi-agent environments. 

 As discussed, grid-based methods are better-suited to 

monotonic environments than complex ones (such as 

StarCraft). In this work, we propose a method for control-

ling many agents in more elegant and flexible fashion by di-

viding the action-space, with consideration given to the cur-

rent formation, and with the goal of maximizing expected 

future rewards. 

Proposed Method 

Flexible Action Decomposition Using Clustering 

In this section, we propose a non-linear decomposition 

method that is suitable for high-dimension state and action 

spaces. More delicate decompositions were processed by a 

method that could respond to the dynamic formation of 

agents, and was expanded to various attributes before 

MARL was  applied. In machine-learning, spatially scat-

tered data are organized into sensible groups by clustering. 

As discussed, this approach is also well-suited to spatial cor-

relation. Here, we used the well-known K-means algorithm 

for the decomposition (Jain, 2010), which is capable of spa-

tial correlation, as its clustering methodology is based on the 

distance between data. This algorithm has been used on 

large amounts of data, and can be used to process very large 

real-world multi-agent tasks. Similarly, Justesen et al. ap-

plied K-means to UCTCD (a family of the Monte Carlo tree-

search) for micro-control management in the StarCraft com-

bat simulator, and reported that it effectively decreased the 

expansion of MCTS (Justesen et al., 2014). We also expect 

to decrease unnecessary exploration to increase model 

learning speed. 

Abstraction of Large Action Space 

To reduce the dimensionality of our approach, we consid-

ered temporal abstraction of the HRL framework. This ap-

proach results in a more stable convergence of large-scale 

problems, but reduces the detail of learning components. 

Typically, in the counterbalance between efficiency and de-

tail, the former is preferable in many-agent problems.  

Following this method, a large multi-agent task we de-

composed into several homogeneous multi-agent tasks. Ac-

cording to Peng et al., a zero-sum stochastic game (SG) be-

tween 𝑁 agents occupying action space 𝐴, and M opponents 

of occupying action space 𝐵, in a state space 𝑆, with transi-

tion function 𝜏 , can be described as a tuple 

(𝑆, {𝐴𝑖}𝑖=1
𝑁 , {𝐵𝑖}𝑖=1

𝑀 , 𝜏, {𝑅𝑖}𝑖=1
𝑁+𝑀)  and we assume learning 

complexity ℂ = 𝑆 × 𝐴𝑁 × 𝐵𝑀   as a reward function of SG 

(Peng et al. 2017).  From this expression, it is easily verified 

that learning complexity ℂ  increases with the number of 

units. Thus, an increase in the number of agents results in an 

increase in complexity. The decomposition of 𝐴𝑁 to reduce 

complexity will be discussed in the next phase. 

ℂ𝑑𝑒𝑐 = 𝑆 × (𝐴𝑔𝑟𝑝
𝑘 × 𝐴𝑖𝑛𝑑

𝑁/𝑘) × 𝐵𝑀              () 

According to Equation 1, when the enemy’s action space 
𝐵 and the number of enemies 𝑀 are fixed, 𝐴𝑁 can be decom-

posed into 𝐴𝑔𝑟𝑝
𝑘and 𝐴𝑖𝑛𝑑

𝑁/𝑘 . The abstracted action space 

𝐴𝑔𝑟𝑝  is applied to a group as a high-level action that 

represents global-range movement, and 𝐴𝑖𝑛𝑑 is a low-level 
action that is executed by individual units within each group  
as a local-range action. In cooperative combat scenarios, 
groups within clusters are homogeneous as they have a 
similar number of agents, and the shared goal of winning the 
game. Therefore, a single model must be trained for micro-
control, making this an inexpensive process. 

   

(a) Clustering of units (b) High-level action (c)  Low-level action 

Figure 1: An implementation of flexible decomposition. (a) K-Means groups the ally units and returns the center coordi-

nates of each cluster. (b) A multi-agent algorithm determines the long-range group-actions. and (c) each unit moves 

short-distances with any micro-control method. 



Learning Architecture 

Utilising the homogeneity of these groups, we propose a 
hierarchical architecture for MARL. We have assigned the 
many-agent and micro-control problems to the high- and 
lower-layer respectively. In this architecture, the high-level 
policy selects a lower-level policy that is expected to produce 
a greater sum of rewards. To overcome the problem of 
delayed-rewards, we designed the high-level policy to have 
a longer duration than the low-level policy (Tang et al. 2018; 
Kulkarni et al., 2016). In this paper, we focus on the high-
level execution of the HRL structure, and other micro-control 
tasks can be found in the referenced literature (Usunier et al., 
2016; Rashid et al., 2019). Our implementation for the 
StarCraft video game is summarized in the following 
sequence. This procedure is performed for each 𝑆𝑡 

1) Clustering: K-means groups the alive units according 
to their two-dimensional (2-D) position, and returns 
the group-labelled units and cluster centers. Then 
local observations are generated to identify the 
members of each group (a technique commonly used 
in the Dec-POMDP framework). 

2) Inference: a multi-agent algorithm is executed with 
local observations (scatter graph), and some 
additional centralized global-state data (health and 
position of all units) to enable cooperative action. 2-
D vectors are required for movement in StarCraft. 

3) Execution: the cluster centers and 2-D vectors from 
previous steps are summed with a constant coefficient 
that has been optimized for global-movement. The 
target position of each group persists for a frame-skip 
duration, and the units move close to the target 
individually for each frame. 

This solution is motivated by the techniques employed by 

human players when controlling large numbers of units in 

RTS games. It is essential that units are grouped for them to 

be controlled in a limited timeframe. When compared to 

other multi-agent systems, this approach of treating spatially 

related units as a “troop” is an inexpensive model. 

Experiments 

StarCraft Multi-Agent Task 

Real-time strategy (RTS) games have characteristics that 

can be transferred to real-world environments because of 

their real-time nature, concurrent party actions, and numer-

ous strategies. StarCraft (a typical RTS game) is often used 

by machine learning researchers as a testbed. The develop-

ment company (Blizzard) provides the application program-

ming interface (API) that enables the StarCraft II video 

game to be used for this purpose (Vinyals et al., 2017; 

Samvelyan et al., 2019), so that various scenarios can be 

tested. Micro-control tasks are investigated by many re-

searchers, as there is a simultaneous goal of cooperation and 

competition (Churchill et al., 2016). Additionally, the game 

has a high-dimensional state and action space according to 

units’ type and quantity, so it is well-suited to experiments 

regarding the balance of exploration and exploitation in the 

context of RL. 

 Micro-control tasks were expanded for our purpose by 

adding more units to increase the dimensionality of the 

learning process. An increase in unit numbers maintains the 

credit-assignment problem, and increases the delay in the 

return of a reward signal. Here, we designed a fully-observ-

able (i.e., except ‘fog of war’) multi-agent environment as 

we are focused on high-level agent actions.  

Experiment Setup 

Three scenarios were prepared to test our proposal. Through 
testing a simple multi-agent algorithm, we designed three 
maps to estimate the cooperation of agents. Figure 2 shows 
the three scenarios created as StarCraft game maps. 

 (a) Flat has the enemies vertically surround the allies on a 
flat map. The game result for this map is impacted by 
establishing an early formation (e.g., a crane-wing formation) 
before combat commences. This is a more complex problem 
than other maps as there are no obstacles.  

 (b) Hill is designed to test solutions to simple cooperative 
problems. A limited number of units can pass the narrow hill 
at one time. For this reason, the groups can divide into three 
directions by mutual agreement so that the enemy is 
surrounded, and the units are victorious. Therefore, group 
communication has an influence on this game result. 

(c) Defense is a scenario that presents a randomly chosen 
number of enemies approaching in two directions, with 
several quantities considered. The allies’ goal is to place two 
appropriately sized groups that take into account the number 
of enemies incoming in each direction. 

 

 

 

 

 

 

 

  movement of enemies 

   

(a) flat (b) hill (c) defense 

Figure 2: Images of the three scenario maps 



Local-Obs (Image) 84 × 84 × 𝑘 Global-Obs (Image) 84 × 84 × 2 

Concatenation each Local-Obs(1), Global-Obs(2) 

Conv(4, stride-1)-16 + AvgPool(2) 

Conv(3, stride-1)-16 + AvgPool(2) 

Conv(3, stride-1) + BN 

Dense(600) + BN 

Dense(300) 

Bi-LSTM(300, length-k) 

Dense(300) + BN 

Dense(150) + BN 

Dense(150) + BN 

Dense(4) + Tanh 

Table 1: Model Architecture. BN: Batch-norm, Conv(4, 

stride-1)-16: 𝟒 × 𝟒 convolution, 16 channels and stride 1. 

ReLU as an activation function, 𝒌: The number of units that 

are alive. 

 
In the three scenarios above, the target was for agents to 

select the appropriate formation for each situation. Teams of 
non-skilled 45 Stalkers (a.k.a Dragoons in StarCraft I) were 
chosen for each experiment. These units were chosen 
because their long weapon-cooldown time allows formations 
to be changed during combat. 

Results 

The three scenarios were each tested twice, once our pro-

posed method and once assuming that each unit is an inde-

pendent agent. Convergence took approximately seven 

hours in a distributed environment using 8 CPUs. The per-

formance on each map is shown in Figure 3. 

Experimental Result 

In Figure 3, the cumulative reward per episode used in RL 

is plotted along with the percentage win-rate of the previous 

100 games. As the reward increases, our agent is minimizing 

the enemy attack, and maximizing the ally attack. At the 

start of the training period, differences between the two 

methods mean that our technique succeeded in reducing the 

dimension, because the movement of the grouped unit pro-

duced a reward variation. 

 The (b) hill environment was easier to train than others, 

because of the relatively small state dimension. Our agents 

focus on the location of the aisle and timing of the attacks, 

rather than how many agents could pass through the aisle. 

The figures show that our process converged twice as fast as 

the conventional method in this scenario. 

Cumulative reward per episode 

   

Win-rate for 100 games 

   

(a) flat (b) hill (c) defense 

Figure 3: The reward and winning rate results for three scenarios. 

(Shaded regions show the error rate when the slide window was set to 1000.) 



 The state dimension  of the (a) flat scenario was large be-

cause there were no obstacles, making this the most complex 

scenario to learn, and also demonstrating the efficiency of 

our method. Training using the individual unit method con-

verged slowly due to unnecessary exploration. Our dimen-

sional decomposition solves this problem because our 

agents focus on group formation, rather than how individual 

units can be assembled. At the start of the scenario, the en-

emy units form a crane wing so our agent took several train-

ing episodes to start to win. Once the training process con-

verged on a solution, our agent dynamically created a form 

that was responsive to the enemies’ formation. 

 The (c) defense scenario created a situation that could not 

have been predicted. A group remained on standby in the 

middle of the fork, and moved to assist when one formation 

showed the potential of losing. Although the distinction of 

agent units is less precise, this approach eases the training 

of multi-agent communication (i.e., we reduced the length 

of the RNN communication layers). 

Discussion 

In comparison to our approach, the non-combined method 

took more episodes to converge. The (a) flat scenario had a 

greater dimensionality that others, and was solved more ef-

ficiently by our abstraction method because our agents focus 

on large-scale multi-agent problems such as formation, and 

the grouping of agents reduces the scope of the exploration 

required. Stanescu and Buro reported that the performance 

of abstraction improves as the number of agents increases 

(Stanescu and Buro, 2018). Similarly, the number of groups 

increases nonlinearly for our method, and it is efficient in 

many-agent situations. 

Through the experimental process we observed that deal-

ing with a large number of agents requires an increased 

training resource. For example, the independent-agent ex-

periments required significantly more memory to save their 

trajectories. Additionally, the training time for our method 

was approximately half that of the individual-agent model. 

Our approach has the further advantage that using fewer 

agents reduces the demand for computing resources. This 

result demonstrates that researchers now have access to en-

vironments that use many agents. 

Conclusion and Future Work 

Applying RL to video games with complex dimensions is 

not trivial. Also, various multi-agent issues arise as the num-

ber of agents increases. In this work, we have taken a hier-

archical approach to simplifying the learning complexity to 

solve StarCraft combat simulation problems. We focused on 

the meta-controls at the top level of the hierarchy architec-

ture. Large problems were divided into homogeneous tasks, 

and the problems were solved easily by a multi-agent system. 

This approach reduces the complexity of MARL, reduces 

the cost of many-agent problems, and can be used without 

any clustering or multi-agent algorithms. 

 In this study, units were grouped using basic K-means. 

However, if the unit type was varied, various strategies are 

required depending on the unit composition. It would be 

necessary to consider a more rigorous clustering process to 

solve these more complex problems. This may require the 

provision of other information (e.g., health, influence) to the 

clustering algorithm, or the implementation of a trainable 

clustering method that can be combined with RL. 
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