

Efficient Multi-Agent Reinforcement Learning Using Clustering

for Many Agents

In-Chang Baek,1 Kyung-Joong Kim2,*
1Department of Computer Science and Engineering, Sejong University, South Korea

2Institute of Integrated Technology, Gwangju Institute of Science and Technology, South Korea
1bic4907@gmail.com, 2kjkim@gist.ac.kr

Abstract

Recently, multi-agent research systems have been used in the
field of reinforcement learning to manage with cooperative
agents. Simultaneously managing a large number of agents is
challenging, so various approaches are being considered.
Specifically, the application of high-dimension data method-
ologies is a significant challenge in the research of many-
agent problems, as complexity increases exponentially with
the number of agents. Furthermore, policy convergence can
be difficult as the contribution of each agent is unclear. In this
work, we flexibly decomposed a multi-agent problem into
sub-multi-agent tasks using a clustering method, and applied
this technique to a hierarchical structure. After abstracting the
movements of units through hierarchical approach, a group’s
action space and micro-control tasks were mapped onto high-
and low-level actions, respectively. We demonstrated our
method through combat scenarios in the StarCraft video
game. Our method successfully decomposed a complex
multi-agent problem into homogeneous sub-tasks, and
showed the advantage of making the training process effi-
cient and inexpensive.

Introduction

In recent years, the field of reinforcement learning (RL) has

developed remarkably, with applications being found in

video games and real-world problems. Dealing with a single

agent is the most important task in RL; and the primary chal-

lenge is in finding a balance between exploration and ex-

ploitation. Recent studies have focused on solving complex

video game problems that are transferable to the real-world.

In particular, long duration scenarios with unclear, delayed

rewards (Kulkarni et al., 2016; Kaelbling, 1996; Bellemare

et al 2016) are unavoidable problems for researchers, and

the capacity to manage problems with high dimensionality

is important. These problems persist, and continued research

aiming to reduce dimensionality is critical if data-efficiency

is to be increased.

*Corresponding Author

 Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

Dealing with multiple agents has introduced a new chal-

lenge as the convergence of multi-agent problems in tradi-

tional scenarios is unreliable, which makes training difficult.

Non-stationary concurrency problems occur when multiple

agents are executed simultaneously (Hernandez-Leal et al.,

2017). Previous multi-agent studies have attempted to trans-

plant existing RL methods into a centralized paradigm (Tan,

1993), and this approach has improved several multi-agent

algorithms by increasing the collaboration between agents

(Foerster et al., 2016).

 As multi-agent methods have been applied to real-world

applications, researchers have shown an increased interest

in addressing problems with many agents. Most related

works focus on the multi-agent credit assignment problem,

which is concerned with reward distribution and devising a

scalable architecture that is less-affected by the number of

agents (Nguyen et al., 2018; Chang, Ho, and Kaelbling,

2004). In this problem, the joint-action set increases with the

number of agents, and the learning complexity increases ex-

ponentially when actions are combined.

 A hierarchical framework was used to solve high-dimen-

sion multi-agent system problems. Several studies have re-

ported that action- and state-space abstraction are good

methods for reducing learning complexity, which increases

learning efficiency. Through this concept, we demonstrate

that more flexible decomposition methods are required in

sensitive applications, such as autonomous vehicles

(Shalev-Shwartz et al., 2016), and traffic routing problems

(Ye et al., 2015; Wiering et al., 2000). This was imple-

mented by substituting a grid-like method with a clustering

algorithm for dynamic grouping. Following the work of

(Stanescu and Buro, 2018), the agents’ action probabilities

were spatially correlated which increased the elegance of

macro-actions.

 In the next section, we present a review of studies that

have inspired our method. We then describe our proposed

technique, which expands upon the hierarchical RL

mailto:bic4907@gmail.com
mailto:kjkim@gist.ac.kr

framework meta-controller (Kulkarni et al., 2016). Experi-

mentally, this new system is demonstrated in three StarCraft

combat scenarios (i.e., a representative multi-agent testbed

was focused on cooperative formation), with a focus on

many-agent cooperative formation, and we assess the effi-

ciency of our method compared to the vanilla multi-agent

RL with qualitative discussion of each scenario.

Related Work

Exploration of high-dimension state spaces has been an im-

portant issue in deep-RL literature. Many studies examine

effective exploration in complex video games with delayed

and sparse reward signals. However, in multi-agent settings,

training numerous agents is a challenging problem that pro-

duces high-dimension state spaces and many joint-action

combinations. Much of the literature addresses high-dimen-

sion learning in single-agent RL fields where learning com-

ponents are decomposed with some examples. However, de-

composing a multi-agent problem necessitates consideration

of agent-property homogeneity. In this section, we will ex-

amine the complexity of multi-agent RL when many agents

are computed, and discuss studies that have attempted to de-

crease the learning dimensionality of multi-agent systems.

Centralized Learning

Training cooperative agents is an ongoing challenge in

multi-agent reinforcement learning (MARL). Historically,

tabular RL methods concentrated on single-agent frame-

works; however, these methods are insufficient for collabo-

rative tasks, as illustrated by independently executed agents

that follow the Dec-POMDP framework (Oliehoek and Am-

ato, 2016). In response, Tan presented Independent Q-

Learning (IQL) that centralizes independent Q-functions for

each agent, and shows that decentralized learning causes

non-stationary problems owing to unstable convergence in

multi-agent settings (Tan, 1993). The centralized learning

concept formed the basis of a paradigm in multi-agent liter-

ature where a centralized Q-function, Q𝑡𝑜𝑡 was trained. This

strategy is useful when solving non-stationary problems as

partial observations of each agent are included during train-

ing.

 The problem of multi-agent credit-assignment modulates

the contribution of each agent considered in centralized

learning. The significance of this effect increases with the

number of joint-action sets, which complicates learning-

processes. This problem is well-studied in the multi-agent

field.

 Foerster et al. proposed COMA, a counterfactual based

actor-critic method, to estimate fictitious individual rewards

distributed from a team-reward signal (Foerster et al., 2018;

Lowe et al., 2017). More elegantly, value decomposition

network (VDN) represented optimal individual value func-

tion through back-propagation of the centralized 𝑄-function

(Sunehag et al., 2018; Rashid et al., 2018). These methods

are well-suited to solving the credit-assignment problem, as

determining individual rewards through reward-shaping is

inefficient and unrealistic in complex video games.

Neural network structures have been designed to improve

communication between agents operating with decentral-

ized execution. CommNet (Sukhbaatar et al., 2016) reported

that a communication-specialized model, particularly one

using recurrent neural networks (RNNs) (Hochreiter et al.,

1997; Cho et al., 2015), was well-suited to multi-agent prob-

lems. Furthermore, BiCNet (Peng et al., 2017) used bi-di-

rectional long short-term memory (LSTM) as a communica-

tion layer to exchange vectorized messages between units,

and showed that it is scalable to an arbitrary number of

agents. The aforementioned techniques are appropriate for a

large number of agents; however, most multi-agent research

focuses on the precise control of a small number of agents,

so new techniques are required to move a large number of

agents effectively.

Temporal Abstraction

When controlling many agents, large-scale maps increase

dimensionality of exploration such that agent distribution

can cause combinatorial explosion of the state-dimension,

and increasing the joint-action set further complicates scala-

bility.

 Hierarchical reinforcement learning (HRL) (Kulkarni et

al., 2016; Pang et al., 2018; Ghavamzadeh et al., 2006) is a

method for efficient RL exploration, which decomposes a

training session into several steps. In particular, this tech-

nique is best applied to long-trajectory problems (e.g., a

broad range of path planning problems). In multi-level HRL,

high- and low-level policies teach abstracted actions for

global- and local-range actions, respectively. The abstract-

ing process is focused on the modular learning component,

and unnecessary details are eliminated.

 In the MARL domain, temporal abstraction is useful for

the formation of agents, and high-level decisions concen-

trate on their movement actions. Tang et al. utilized this

structure in a three-player basketball game; players were lo-

cated with a high-level multi-agent policy, and replacing in-

dependent actions with single-agent policy (Tang et al.,

2018). This demonstrated that the low-level tasks executed

by agents were homogeneous and, therefore, could be re-

placed with a single policy. To scale this problem for many

agents, a large action space must be abstracted, and homo-

geneity of grouped agents assumed.

Spatial Decomposition

The abstraction of minor tasks for many-agent problems

leads to improved performance and efficiency. Stanescu and

Buro presented a concept for the decomposition of multi-

agent systems (Stanescu and Buro, 2018) that was demon-

strated in a many-agent environment (Zheng et al., 2017)

and focused on the cooperative formation of agents. In their

work, the action space was decomposed into multi-level

layers using a HRL architecture. Specifically, a rectangular

map was divided into gridded sectors. This approach was

successful due to the homogeneity nearby sectors, and this

concept is applicable in most multi-agent environments.

 As discussed, grid-based methods are better-suited to

monotonic environments than complex ones (such as

StarCraft). In this work, we propose a method for control-

ling many agents in more elegant and flexible fashion by di-

viding the action-space, with consideration given to the cur-

rent formation, and with the goal of maximizing expected

future rewards.

Proposed Method

Flexible Action Decomposition Using Clustering

In this section, we propose a non-linear decomposition

method that is suitable for high-dimension state and action

spaces. More delicate decompositions were processed by a

method that could respond to the dynamic formation of

agents, and was expanded to various attributes before

MARL was applied. In machine-learning, spatially scat-

tered data are organized into sensible groups by clustering.

As discussed, this approach is also well-suited to spatial cor-

relation. Here, we used the well-known K-means algorithm

for the decomposition (Jain, 2010), which is capable of spa-

tial correlation, as its clustering methodology is based on the

distance between data. This algorithm has been used on

large amounts of data, and can be used to process very large

real-world multi-agent tasks. Similarly, Justesen et al. ap-

plied K-means to UCTCD (a family of the Monte Carlo tree-

search) for micro-control management in the StarCraft com-

bat simulator, and reported that it effectively decreased the

expansion of MCTS (Justesen et al., 2014). We also expect

to decrease unnecessary exploration to increase model

learning speed.

Abstraction of Large Action Space

To reduce the dimensionality of our approach, we consid-

ered temporal abstraction of the HRL framework. This ap-

proach results in a more stable convergence of large-scale

problems, but reduces the detail of learning components.

Typically, in the counterbalance between efficiency and de-

tail, the former is preferable in many-agent problems.

Following this method, a large multi-agent task we de-

composed into several homogeneous multi-agent tasks. Ac-

cording to Peng et al., a zero-sum stochastic game (SG) be-

tween 𝑁 agents occupying action space 𝐴, and M opponents

of occupying action space 𝐵, in a state space 𝑆, with transi-

tion function 𝜏 , can be described as a tuple

(𝑆, {𝐴𝑖}𝑖=1
𝑁 , {𝐵𝑖}𝑖=1

𝑀 , 𝜏, {𝑅𝑖}𝑖=1
𝑁+𝑀) and we assume learning

complexity ℂ = 𝑆 × 𝐴𝑁 × 𝐵𝑀 as a reward function of SG

(Peng et al. 2017). From this expression, it is easily verified

that learning complexity ℂ increases with the number of

units. Thus, an increase in the number of agents results in an

increase in complexity. The decomposition of 𝐴𝑁 to reduce

complexity will be discussed in the next phase.

ℂ𝑑𝑒𝑐 = 𝑆 × (𝐴𝑔𝑟𝑝
𝑘 × 𝐴𝑖𝑛𝑑

𝑁/𝑘) × 𝐵𝑀 ()

According to Equation 1, when the enemy’s action space
𝐵 and the number of enemies 𝑀 are fixed, 𝐴𝑁 can be decom-

posed into 𝐴𝑔𝑟𝑝
𝑘and 𝐴𝑖𝑛𝑑

𝑁/𝑘 . The abstracted action space

𝐴𝑔𝑟𝑝 is applied to a group as a high-level action that

represents global-range movement, and 𝐴𝑖𝑛𝑑 is a low-level
action that is executed by individual units within each group
as a local-range action. In cooperative combat scenarios,
groups within clusters are homogeneous as they have a
similar number of agents, and the shared goal of winning the
game. Therefore, a single model must be trained for micro-
control, making this an inexpensive process.

(a) Clustering of units (b) High-level action (c) Low-level action

Figure 1: An implementation of flexible decomposition. (a) K-Means groups the ally units and returns the center coordi-

nates of each cluster. (b) A multi-agent algorithm determines the long-range group-actions. and (c) each unit moves

short-distances with any micro-control method.

Learning Architecture

Utilising the homogeneity of these groups, we propose a
hierarchical architecture for MARL. We have assigned the
many-agent and micro-control problems to the high- and
lower-layer respectively. In this architecture, the high-level
policy selects a lower-level policy that is expected to produce
a greater sum of rewards. To overcome the problem of
delayed-rewards, we designed the high-level policy to have
a longer duration than the low-level policy (Tang et al. 2018;
Kulkarni et al., 2016). In this paper, we focus on the high-
level execution of the HRL structure, and other micro-control
tasks can be found in the referenced literature (Usunier et al.,
2016; Rashid et al., 2019). Our implementation for the
StarCraft video game is summarized in the following
sequence. This procedure is performed for each 𝑆𝑡

1) Clustering: K-means groups the alive units according
to their two-dimensional (2-D) position, and returns
the group-labelled units and cluster centers. Then
local observations are generated to identify the
members of each group (a technique commonly used
in the Dec-POMDP framework).

2) Inference: a multi-agent algorithm is executed with
local observations (scatter graph), and some
additional centralized global-state data (health and
position of all units) to enable cooperative action. 2-
D vectors are required for movement in StarCraft.

3) Execution: the cluster centers and 2-D vectors from
previous steps are summed with a constant coefficient
that has been optimized for global-movement. The
target position of each group persists for a frame-skip
duration, and the units move close to the target
individually for each frame.

This solution is motivated by the techniques employed by

human players when controlling large numbers of units in

RTS games. It is essential that units are grouped for them to

be controlled in a limited timeframe. When compared to

other multi-agent systems, this approach of treating spatially

related units as a “troop” is an inexpensive model.

Experiments

StarCraft Multi-Agent Task

Real-time strategy (RTS) games have characteristics that

can be transferred to real-world environments because of

their real-time nature, concurrent party actions, and numer-

ous strategies. StarCraft (a typical RTS game) is often used

by machine learning researchers as a testbed. The develop-

ment company (Blizzard) provides the application program-

ming interface (API) that enables the StarCraft II video

game to be used for this purpose (Vinyals et al., 2017;

Samvelyan et al., 2019), so that various scenarios can be

tested. Micro-control tasks are investigated by many re-

searchers, as there is a simultaneous goal of cooperation and

competition (Churchill et al., 2016). Additionally, the game

has a high-dimensional state and action space according to

units’ type and quantity, so it is well-suited to experiments

regarding the balance of exploration and exploitation in the

context of RL.

 Micro-control tasks were expanded for our purpose by

adding more units to increase the dimensionality of the

learning process. An increase in unit numbers maintains the

credit-assignment problem, and increases the delay in the

return of a reward signal. Here, we designed a fully-observ-

able (i.e., except ‘fog of war’) multi-agent environment as

we are focused on high-level agent actions.

Experiment Setup

Three scenarios were prepared to test our proposal. Through
testing a simple multi-agent algorithm, we designed three
maps to estimate the cooperation of agents. Figure 2 shows
the three scenarios created as StarCraft game maps.

 (a) Flat has the enemies vertically surround the allies on a
flat map. The game result for this map is impacted by
establishing an early formation (e.g., a crane-wing formation)
before combat commences. This is a more complex problem
than other maps as there are no obstacles.

 (b) Hill is designed to test solutions to simple cooperative
problems. A limited number of units can pass the narrow hill
at one time. For this reason, the groups can divide into three
directions by mutual agreement so that the enemy is
surrounded, and the units are victorious. Therefore, group
communication has an influence on this game result.

(c) Defense is a scenario that presents a randomly chosen
number of enemies approaching in two directions, with
several quantities considered. The allies’ goal is to place two
appropriately sized groups that take into account the number
of enemies incoming in each direction.

 movement of enemies

(a) flat (b) hill (c) defense

Figure 2: Images of the three scenario maps

Local-Obs (Image) 84 × 84 × 𝑘 Global-Obs (Image) 84 × 84 × 2

Concatenation each Local-Obs(1), Global-Obs(2)

Conv(4, stride-1)-16 + AvgPool(2)

Conv(3, stride-1)-16 + AvgPool(2)

Conv(3, stride-1) + BN

Dense(600) + BN

Dense(300)

Bi-LSTM(300, length-k)

Dense(300) + BN

Dense(150) + BN

Dense(150) + BN

Dense(4) + Tanh

Table 1: Model Architecture. BN: Batch-norm, Conv(4,

stride-1)-16: 𝟒 × 𝟒 convolution, 16 channels and stride 1.

ReLU as an activation function, 𝒌: The number of units that

are alive.

In the three scenarios above, the target was for agents to

select the appropriate formation for each situation. Teams of
non-skilled 45 Stalkers (a.k.a Dragoons in StarCraft I) were
chosen for each experiment. These units were chosen
because their long weapon-cooldown time allows formations
to be changed during combat.

Results

The three scenarios were each tested twice, once our pro-

posed method and once assuming that each unit is an inde-

pendent agent. Convergence took approximately seven

hours in a distributed environment using 8 CPUs. The per-

formance on each map is shown in Figure 3.

Experimental Result

In Figure 3, the cumulative reward per episode used in RL

is plotted along with the percentage win-rate of the previous

100 games. As the reward increases, our agent is minimizing

the enemy attack, and maximizing the ally attack. At the

start of the training period, differences between the two

methods mean that our technique succeeded in reducing the

dimension, because the movement of the grouped unit pro-

duced a reward variation.

 The (b) hill environment was easier to train than others,

because of the relatively small state dimension. Our agents

focus on the location of the aisle and timing of the attacks,

rather than how many agents could pass through the aisle.

The figures show that our process converged twice as fast as

the conventional method in this scenario.

Cumulative reward per episode

Win-rate for 100 games

(a) flat (b) hill (c) defense

Figure 3: The reward and winning rate results for three scenarios.

(Shaded regions show the error rate when the slide window was set to 1000.)

 The state dimension of the (a) flat scenario was large be-

cause there were no obstacles, making this the most complex

scenario to learn, and also demonstrating the efficiency of

our method. Training using the individual unit method con-

verged slowly due to unnecessary exploration. Our dimen-

sional decomposition solves this problem because our

agents focus on group formation, rather than how individual

units can be assembled. At the start of the scenario, the en-

emy units form a crane wing so our agent took several train-

ing episodes to start to win. Once the training process con-

verged on a solution, our agent dynamically created a form

that was responsive to the enemies’ formation.

 The (c) defense scenario created a situation that could not

have been predicted. A group remained on standby in the

middle of the fork, and moved to assist when one formation

showed the potential of losing. Although the distinction of

agent units is less precise, this approach eases the training

of multi-agent communication (i.e., we reduced the length

of the RNN communication layers).

Discussion

In comparison to our approach, the non-combined method

took more episodes to converge. The (a) flat scenario had a

greater dimensionality that others, and was solved more ef-

ficiently by our abstraction method because our agents focus

on large-scale multi-agent problems such as formation, and

the grouping of agents reduces the scope of the exploration

required. Stanescu and Buro reported that the performance

of abstraction improves as the number of agents increases

(Stanescu and Buro, 2018). Similarly, the number of groups

increases nonlinearly for our method, and it is efficient in

many-agent situations.

Through the experimental process we observed that deal-

ing with a large number of agents requires an increased

training resource. For example, the independent-agent ex-

periments required significantly more memory to save their

trajectories. Additionally, the training time for our method

was approximately half that of the individual-agent model.

Our approach has the further advantage that using fewer

agents reduces the demand for computing resources. This

result demonstrates that researchers now have access to en-

vironments that use many agents.

Conclusion and Future Work

Applying RL to video games with complex dimensions is

not trivial. Also, various multi-agent issues arise as the num-

ber of agents increases. In this work, we have taken a hier-

archical approach to simplifying the learning complexity to

solve StarCraft combat simulation problems. We focused on

the meta-controls at the top level of the hierarchy architec-

ture. Large problems were divided into homogeneous tasks,

and the problems were solved easily by a multi-agent system.

This approach reduces the complexity of MARL, reduces

the cost of many-agent problems, and can be used without

any clustering or multi-agent algorithms.

 In this study, units were grouped using basic K-means.

However, if the unit type was varied, various strategies are

required depending on the unit composition. It would be

necessary to consider a more rigorous clustering process to

solve these more complex problems. This may require the

provision of other information (e.g., health, influence) to the

clustering algorithm, or the implementation of a trainable

clustering method that can be combined with RL.

Acknowledgements

This research was supported by the Basic Science Research

Program through the National Research Foundation of Ko-

rea (NRF) funded by the Ministry of Science, ICT & Future

Planning (grant no. 2017R1A2B4002164).

This research is supported by Ministry of Culture, Sports

and Tourism (MCST) and Korea Creative Content Agency

(KOCCA) in the Culture Technology (CT) Research & De-

velopment Program 2019.

References

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton,
D., & Munos, R. (2016). Unifying count-based exploration and in-
trinsic motivation. In Advances in Neural Information Processing
Systems (pp. 1471-1479).

Chang, Y. H., Ho, T., & Kaelbling, L. P. (2004). All learning is
local: Multi-agent learning in global reward games. Advances in
Neural Information Processing Systems (pp. 807-814).

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2015). Gated feed-
back recurrent neural networks. International Conference on Ma-
chine Learning (pp. 2067–2075).

Churchill, D., Preuss, M., Richoux, F., Synnaeve, G., Uriarte, A.,
Ontañnón, S., & Čertický, M. (2016). StarCraft bots and competi-
tions. Encyclopedia of Computer Graphics and Games, (pp. 1-18).

Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., & White-
son, S. (2018). Counterfactual multi-agent policy gradients. 32nd
AAAI Conference on Artificial Intelligence.

Ghavamzadeh, M., Mahadevan, S., & Makar, R. (2006). Hierar-
chical multi-agent reinforcement learning. Autonomous Agents and
Multi-Agent Systems, 13 (2), (pp. 197–229).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9 (8), (pp. 1735–1780).

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pat-
tern Recognition Letters, 31 (8), (pp. 651–666).

Justesen, N., Tillman, B., Togelius, J., & Risi, S. (2014). Script-
and cluster-based UCT for StarCraft. 2014 IEEE Conference on
Computational Intelligence and Games, (pp. 1–8).

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Rein-
forcement learning: A survey. Journal of Artificial Intelligence Re-
search, 4, (pp. 237–285).

Kulkarni, T. D., Narasimhan, K., Saeedi, A., & Tenenbaum, J.
(2016). Hierarchical deep reinforcement learning: Integrating tem-
poral abstraction and intrinsic motivation. Advances in Neural In-
formation Processing Systems (pp. 3675–3683).

Nguyen, D. T., Kumar, A., & Lau, H. C. (2018). Credit assign-
ment for collective multiagent RL with global rewards. Advances
in Neural Information Processing Systems, (pp. 8102–8113).

Oliehoek, F. A., & Amato, C. (2016). A concise introduction to
decentralized POMDPs (Vol. 1). Springer International Publishing.

Pang, Z. J., Liu, R. Z., Meng, Z. Y., Zhang, Y., Yu, Y., & Lu, T.
(2018). On reinforcement learning for full-length game of starcraft.
arXiv preprint arXiv:1809.09095.

Peng, P., Wen, Y., Yang, Y., Yuan, Q., Tang, Z., Long, H., &
Wang, J. (2017). Multiagent bidirectionally-coordinated nets:
Emergence of human-level coordination in learning to play
starcraft combat games. arXiv preprint arXiv:1703.10069.

Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G., Foerster,
J., & Whiteson, S. (2018). QMIX: Monotonic value function fac-
torisation for deep multi-agent reinforcement learning. arXiv pre-
print arXiv:1803.11485.

Samvelyan, M., Rashid, T., de Witt, C. S., Farquhar, G., Nardelli,
N., Rudner, T. G., ... & Whiteson, S. (2019). The StarCraft multi-
agent challenge. arXiv preprint arXiv:1902.04043.

Shalev-Shwartz, S., Shammah, S., & Shashua, A. (2016). Safe,
multi-agent, reinforcement learning for autonomous driving. arXiv
preprint arXiv:1610.03295.

Stanescu, M., & Buro, M. (2018). Spatial Action Decomposition
Learning Applied to RTS Combat Games. In AIIDE Workshops.
Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi,
V., Jaderberg, M., ... & Graepel, T. (2018, July). Value-decompo-
sition networks for cooperative multi-agent learning based on team
reward. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems (pp. 2085-2087). In-
ternational Foundation for Autonomous Agents and Multiagent
Systems

Tan, M. (1993). Multi-agent reinforcement learning: Independent
vs. cooperative agents. Proceedings of the 10th International Con-
ference on Machine Learning (pp. 330–337).

Tang, H., Hao, J., Lv, T., Chen, Y., Zhang, Z., Jia, H., ... & Wang,
L. (2018). Hierarchical deep multi-agent reinforcement learning.
arXiv preprint arXiv:1809.09332.

Tang, H., Hao, J., Lv, T., Chen, Y., Zhang, Z., Jia, H., ... & Wang,
L. (2018). Hierarchical deep multiagent reinforcement learning.
arXiv preprint arXiv:1809.09332.\

Usunier, N., Synnaeve, G., Lin, Z., & Chintala, S. (2016). Episod-
ic exploration for deep deterministic policies: An application to
starcraft micromanagement tasks. arXiv preprint
arXiv:1609.02993.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets,
A. S., Yeo, M., ... & Quan, J. (2017). Starcraft II: A new challenge
for reinforcement learning. arXiv preprint arXiv:1708.04782.

Wiering, M. A. (2000). Multi-agent reinforcement learning for
traffic light control. Machine Learning: Proceedings of the 17th In-
ternational Conference (ICML'2000) (pp. 1151–1158).

Ye, D., Zhang, M., & Yang, Y. (2015). A multi-agent framework
for packet routing in wireless sensor networks. Sensors, 15 (5), (pp.
10026–10047).

Zheng, L., Yang, J., Cai, H., Zhou, M., Zhang, W., Wang, J., & Yu,
Y. (2018, April). MAgent: A many-agent reinforcement learning
platform for artificial collective intelligence. In 32nd AAAI Confer-
ence on Artificial Intelligence.

