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Abstract

Player imitation, in which an AI agent attempts to mimic a
specific player’s actions, can expand the possibilities for au-
tomated playtesting and adaptive AI. Prior work on player
imitation, however, has been limited to relatively simple do-
mains. Real-time strategy (RTS) games require complex,
strategic decision-making, but previous research on them has
not focused on player imitation. In this study, we compare
player imitation using recurrent neural networks, random
forests, and a random baseline model. We test these methods
using replays from the popular RTS game StarCraft. We com-
pare the results across methods and discuss how differences
in the data sets affect performance, finding that RNNs are the
most successful of the evaluated methods. We discuss take-
aways for future research, including ethical considerations.

Introduction
“Player imitation,” which attempts to mimic a particular
player’s gameplay decisions, could unlock new opportuni-
ties in automated playtesting, behavior modeling for proce-
dural content and AI generation, and human-like agents.

By imitating a particular player, we might incorporate the
quirks and preferences of that player’s gameplay into an AI
agent. Using the imitation as a training partner, we might
train agents to compete or cooperate with that player.

Automated playtesting is a growing area of research, in
which AI agents act in the role of a player in order to ease
and expand playtesting (Holmgård et al. 2018). For inde-
pendent game developers, or for games with large possibil-
ity spaces, such as those using procedural content genera-
tion, automated playtesting can make comprehensive test-
ing less prohibitive. Player imitation could enable automated
playtesting that explores how a player with a particular abil-
ity level, a specific disability, or a certain preferred play style
would interact with the game.

Thus, player imitation, if sufficiently robust, could be-
come a flexible and broadly applicable technique. So far,
however, research has not developed player imitation with
sufficient power and generality to meet these needs.

Real-time strategy (RTS) games present a particularly
complex and difficult setting for player imitation. In these

Copyright c© 2019 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

games, such as StarCraft, agents must decide what buildings
and units to build, and when, among other tasks. In this do-
main, player imitation requires strategic action, precise tim-
ing, and mimicking of the player’s particular strategic and
tactical preferences while reacting to opponents’ decisions.

To begin exploring models that might meet these require-
ments, we examine three methods for imitating player be-
havior in StarCraft, specifically focusing on strategic level
actions: deciding what buildings and units to build and when
to build them. We treat this as a supervised learning prob-
lem, rather than as indirect imitation learning (Hussein et al.
2017), due to the lack of a fast forward simulation and the
focus on precise imitation of behavior in known situations.

Our approach compares a random baseline algorithm, ran-
dom forests (RFs), and recurrent neural networks (RNNs).
We measure the results using playtraces from two StarCraft
players of the “Zerg” faction. We report results of and com-
parisons between these techniques in several data sets: single
faction matchups or combining all factions, on a single map
and on multiple maps. We also report the effects of the size
of the data set on accuracy.

We show that, of the techniques presented here and com-
pared against prior results by Justesen and Risi (2017),
RNNs are the most successful in achieving player imitation.
We discuss the meaning of our results for future research in
player imitation, their limitations, and the ethical implica-
tions of this research, including potential abuses of player
imitation and recommendations to avoid enabling them.

Related Work
Imitation Learning
The research area of “imitation learning” seeks to boot-
strap AI task performance by imitating experts, providing
a starting point for further learning (Hussein et al. 2017).
State-of-the-art indirect imitation learning techniques, such
as GAIL (Ho and Ermon 2016), usually require environmen-
tal interaction and an evaluation function for performance in
order to improve. This is often distinguished from direct im-
itation, such as “behaviour cloning,” which learns directly
from training data without further learning for generaliza-
tion (Ghasemipour, Gu, and Zemel 2019). While appearing
human-like is often a goal of imitation learning, it also usu-
ally prioritizes “effective task performance,” such as win-



ning a game, rather than pure imitation.
In games, several researchers have applied various forms

of imitation learning, as surveyed by Hussein et al. (2017).
Most recently, DeepMind employed imitation learning to
bootstrap the AlphaStar AI for StarCraft 2 (Arulkumaran,
Cully, and Togelius 2019), though, as in some other imi-
tation learning, they combined data from multiple experts,
rather than seeking to imitate a single, specific individual.

In this work, however, we do not assume access to a fast
forward simulation. We also do not require an evaluation
function for novel states, unlike indirect imitation learning.
Instead, we seek to precisely predict the player’s behavior
in situations similar to those in the training data. This leads
us to formulate the problem of player imitation as a super-
vised learning problem, more akin to behavior cloning than
to indirect imitation learning, as further described below.

Player Imitation and Human-Like AI in Games
Researchers have long been interested in building human-
like AI behavior for games, sometimes learning from human
players, e.g. (Laird and Duchi 2000; Geisler 2002; Priester-
jahn et al. 2005; Schrum, Karpov, and Miikkulainen 2011;
Llargues Asensio et al. 2014; Holmgård et al. 2018). These
efforts, however, were aiming for general human-like AI or
imitating broad play-styles. It is unclear whether they would
learn the specific strategies of a particular player, which
would require generalizing from a smaller data set.

In a few cases, researchers have targeted imitation of a
particular player. This work originally focused on racing
games (Togelius, De Nardi, and Lucas 2006). The “Dri-
vatar” system for Forza Motorsport imitated specific play-
ers in a commercial game (Muñoz, Gutierrez, and Sanchis
2010). From this success, van Hoorn et al. (2009) began
researching “player imitation,” followed by others (Carda-
mone, Loiacono, and Lanzi 2009; Muñoz, Gutierrez, and
Sanchis 2010). Beyond racing, Killer Instinct’s Shadow AI
imitated players in a commercial fighting game using N-
grams (Neal and Hayles 2016). Racing and fighting games,
however, feature simple game states and decision-making,
making these prior approaches difficult to generalize. Our
work is, to our knowledge, the first to explore the imitation
of a specific player in more complex strategy games.

Learning from RTS Replays
In the RTS genre, researchers have explored techniques
for learning from game replays, usually to model oppo-
nent behavior. For WARGUS (Ontañón et al. 2007) and
StarCraft, researchers began with case-based reasoning to
predict build and research actions (Hsieh and Sun 2008;
Weber and Mateas 2009; Farouk, Moawad, and Aref 2017).

For predicting the order in which opponents will build
units, researchers have studied Bayesian (Dereszynski et al.
2011; Synnaeve and Bessiere 2011) and constraint-based
methods (Stanescu et al. 2016). Random forests have shown
promise for identifying strategies and players (Cho, Kim,
and Cho 2013; Liu, Ballinger, and Louis 2013). In this work,
we test random forests for imitating specific players. We do
not use Bayesian or constraint-based models, as it is less
clear how to apply them to player imitation.

For performing actions based on imitation of human
replays, Bryant and Miikkulainen applied neuroevolution
to learn a policy for a simple strategy game (2007), and
Robertson and Watson (2015) have explored automatically
building behavior trees. However, this resulted in an un-
wieldy number of branches. Justesen and Risi (2017) em-
ployed a 4-layer feedforward neural network to predict
player build actions for a single faction matchup in Star-
Craft, resulting in a performance improvement. We report a
comparison between our results and theirs, though the com-
parison is not exact because they were predicting generic
player behavior, rather than imitating a specific player.

Methods
Our method consists of the following primary algorithmic
components: a basic game state processing pass, followed by
a transformation into a human-designed state representation,
then training using this representation, and finally predic-
tion. We compare three different methods: a simple random
baseline, random forests, and recurrent neural networks.1

Data Processing
We use replays from the public data set “StarData,” by Lin et
al. (2017), consisting of 65,646 StarCraft replays, with game
states recorded every 3 frames. We consider only games with
exactly two players. Because we are imitating a particular
player, we do not use the entire data set. We use replays
associated with that player’s anonymous username.

We extract and store the data in our desired format using
TorchCraft (Synnaeve et al. 2016). Each data point is a pair
(Si, ai) where Si = (fi1, fi2, . . . , fim) represents a state
and fij , j = 0, ...,m are the features describing that state.
Each state has a corresponding action ai, which represents
the first unit the player began building during that frame (or
is “empty,” represented by -1, if they built no unit). Because
the pre-extracted replays do not contain action information,
we separately extract the action labels from the raw replay
files (also distributed in the StarData data set).

In this way, we can treat the problem of imitating the
player’s unit construction actions as a multi-class classifica-
tion problem on a sequence of game states, where the inputs
are the features S and the classes correspond to the possible
actions a, including the empty action. By including empty
actions, we require that the imitation must predict not only
the order of actions but also their precise timing, since we
feed our algorithms one state at a time.

As a first-pass processing step, we extract many low-level
features, such as the map ID2, the players’ factions, their
resources (such as gas and ore), their units, and the units’
properties. Using domain knowledge, we encode these into
more informative features. For example, we aggregate health
percent across all units. Other features include: counts of
workers, resource units, and buildings (and how many are
under attack); past build actions — the last unit built, when,
and a “build intensity” which increases with each build and

1The code and details of our data processing and prediction
methods are available at https://hdl.handle.net/2047/D20323119.

2Categorical features were converted into enums.



decays over time; and aggregate positional data — the mean
and std. dev. of units’ positions, their average velocity, and
the distance between our army’s mean position and that of
the enemy army. Note that we consider all enemy units, not
only the ones visible to the player.

Instead of separate features for more than 100 different
unit types, we assume players will use a single faction’s units
and re-use 35 slots among all three factions.3 We further
compress the features by grouping unit properties (or flags)
into domain-specific categories, counting instances within
the group. These include: attacking, moving, staying, debuff,
building, gathering, and other. We similarly sum units’ prop-
erties, such as armor, shields, and attack power. We do not
currently encode map terrain data, beyond the map ID. In
total, we compute 154 features: 8 for game meta-data; 2 for
battle information; 4 for personal build information; then for
each player: 6 for resources, 35 for units, 15 for unit proper-
ties, 3 for buildings and workers, and 11 for army status.

Models
Our random baseline algorithm simply chooses at random
between predicting any of the units that the player could
build, given the game state, taking into account the player’s
current buildings and resources. Though we do not expect
this baseline to be at all successful in imitating a specific
player, it can tell us how much the other approaches improve
on random selection among all reasonable actions.

Random forests construct several decision trees at train-
ing time, minimizing correlations, and, when used for clas-
sification, output the class that is the mode of their predicted
classes (Ho 1995). For our random forests implementa-
tion, we use the sklearn RandomForestClassifier.4 This li-
brary provides several parameters including class weight-
ing, number of trees, max-depth of trees, and others. We
use the following non-default parameter values: “balanced”
class weight, 20 max features, 200 estimators.

Our recurrent neural networks are built on the open-
source pytorch framework.5 We use a single recurrent layer,
implemented as a Long Short Term Memory (LSTM) net-
work (Hochreiter and Schmidhuber 1997). We apply a ran-
dom dropout of 40 percent, as determined by a grid search
on non-empty F1 score (20 and 60 percent were also tested),
to reduce overfitting. A final output Softmax layer is shaped
to the number of possible actions. We performed a grid
search to determine the number of LSTM layers and nodes,
with the best result being 1 layer (up to 4 layers were tested)
with 600 nodes (500 and 800 were also tested). We did not
test significantly larger values, in order to ensure that our
model could be run on a single machine by a game designer.

For training, we use Cross-Entropy Loss, as it is suited to
multi-class classification (Shore and Johnson 1981). We use
ADAM for optimization and learning rate control (Kingma
and Ba 2015), halving the rate when training loss plateaus
for 100 epochs, with pytorch’s “ReduceLROnPlateau.”

3As an exception, the Dark Archon can Mind Control other
units. However, this case is rare and therefore ignored for this work.

4https://scikit-learn.org/stable/index.html
5https://pytorch.org

StarCraft replays’ states are highly skewed towards the
correct action being “build nothing” (empty actions), and
many specific actions are very rare. To counter this, we
weight the loss for failing to predict each action. The weight
is the inverse of the average percentage of the action in the
training data: w =

∑R
i=0Ni/ni where R is the number of

replays,N is the total length of the replay, and n is the count
of that action in that replay. We also normalize states, divid-
ing by the maximum value in the training set for each input.

Experiment
We evaluated each algorithm by predicting actions in replays
from two specific players, who we designate P1 and P2. We
predict each action in the replay, based on its corresponding
state, so this is a supervised learning, not indirect imitation
learning, style evaluation. Each faction in StarCraft has dif-
ferent units and strategies, so we chose games played as the
“Zerg” faction. For P1, we limited the data to replays from a
single, specific map to further constrain the problem. For P2,
we used games played on a variety of maps. Three of the four
data sets for each player consisted of matches against a par-
ticular opponent faction. These were, for P1 and (P2): 152
(305) replays against “Zerg” opponents, 206 (217) against
“Terran” opponents, and 204 (240) against “Protoss” oppo-
nents. Finally, we combined the three factions to form a full
data set of 562 (762) replays. For the RNNs, we also tested a
small data set of 50 randomly selected games of all factions
from P1, in order to test performance with less training data.

These replays ranged in length from about 1,300 to 10,000
frames, depending on game length. We randomly selected a
validation (∼ 5%) and test set (∼ 20%) from each data set.
For the RNNs, we trained for 4000 epochs, which was suf-
ficient to reach a plateau in their performance. We chose not
to perform cross-validation, as training each RNN required
approximately a day on a single machine.

We computed precision, recall, and F1 score for each
game in the test set as micro-averages, meaning that we
added the numerator and denominator terms for each action,
then divided those sums. Precision indicates, averaged for
all classes, the proportion of actions that, when predicted,
were present in the ground truth replay (not false positives).
Recall indicates, averaged for all classes, the proportion of
actions that, when they appeared in the ground truth replay,
were correctly predicted (not false negatives). F1 score me-
diates between these. For RNNs, we report Top-1 and Top-3
error (the % of predictions in which the correct action is not
in the 1 or 3 most probable). Since the baseline and RFs do
not rank actions by likelihood, we cannot report Top-3 er-
ror for them. We also computed the statistics for non-empty
actions only, omitting the “do nothing” action.

On the test set, we report these metrics separately for
each game, as well as “Time Warp Edit Distance” (TWED)
(Marteau 2009). TWED measures the similarity of two
timed sequences of actions, with a configurable penalty for
incorrect timing. We chose to set this penalty to 0.1, since
it should be minimally noticeable to act within an error less
than human reaction time (approximately 200-500 millisec-
onds). We report the average TWED per non-empty action.



Factions Error Total F1 Total Error NE Precision NE Recall NE F1 NE
B

as
el

in
e

Zerg P1 0.91± 0.015 0.086± 0.015 0.93± 0.042 0.0016± 0.0010 0.075± 0.042 0.0032± 0.002
Zerg P2 0.92± 0.019 0.082± 0.019 0.94± 0.038 0.0012± 0.0009 0.062± 0.038 0.0023± 0.0018

Terran P1 0.93± 0.017 0.071± 0.017 0.95± 0.015 0.0017± 0.0006 0.05± 0.015 0.0033± 0.0011
Terran P2 0.93± 0.031 0.07± 0.031 0.94± 0.028 0.0017± 0.0009 0.064± 0.028 0.0033± 0.0017
Protoss P1 0.93± 0.016 0.072± 0.016 0.94± 0.023 0.0024± 0.0008 0.056± 0.023 0.0045± 0.0014
Protoss P2 0.92± 0.016 0.076± 0.016 0.94± 0.017 0.0017± 0.0008 0.062± 0.017 0.0034± 0.0015

R
an

do
m

Fo
re

st
s Zerg P1 0.018± 0.0049 0.98± 0.0049 1.00± 0.0003 0.67± 0.63 0.017± 0.023 0.033± 0.044

Zerg P2 0.016± 0.0039 0.98± 0.0039 1.00± 0.0006 1.00± 0.50 0.020± 0.033 0.039± 0.065
Terran P1 0.032± 0.0085 0.97± 0.0085 1.00± 0.0004 0.78± 0.34 0.012± 0.013 0.024± 0.025
Terran P2 0.025± 0.052 0.98± 0.052 1.00± 0.0004 1.00± 0.00 0.013± 0.017 0.026± 0.033
Protoss P1 0.04± 0.013 0.96± 0.013 1.00± 0.0004 0.78± 0.43 0.0092± 0.012 0.018± 0.023
Protoss P2 0.027± 0.0078 0.97± 0.0078 1.00± 0.0003 1.00± 0.20 0.011± 0.011 0.021± 0.021

R
N

N

Zerg P1 0.41± 0.059 0.59± 0.059 0.63± 0.15 0.017± 0.0084 0.37± 0.15 0.032± 0.016
Zerg P2 0.32± 0.070 0.68± 0.070 0.64± 0.17 0.018± 0.077 0.36± 0.17 0.034± 0.014

Terran P1 0.34± 0.12 0.66± 0.12 0.78± 0.06 0.021± 0.0062 0.22± 0.06 0.037± 0.011
Terran P2 0.22± 0.66 0.78± 0.065 0.79± 0.094 0.025± 0.011 0.21± 0.094 0.045± 0.020
Protoss P1 0.58± 0.17 0.42± 0.17 0.69± 0.10 0.022± 0.0062 0.31± 0.10 0.041± 0.011
Protoss P2 0.53± 0.10 0.47± 0.10 0.71± 0.075 0.014± 0.0050 0.29± 0.076 0.027± 0.0094

Table 1: The medians and interquartile ranges for the metrics of each method on the test sets split by faction, for each player.
“NE” indicates that the statistic is for non-empty actions (where a unit was built) only. Bolded results are the best for a metric for
each test set. Note that values of 1.00 indicate that the median is at or very near 1, but individual games still vary in performance.

RNN TWED Top3 Err Total F1 Total Top3 Err NE Precision NE Recall NE F1 NE
Player 1 Replays

All 4.73± 0.97 0.014± 0.016 0.60± 0.26 0.39± 0.14 0.026± 0.0095 0.34± 0.15 0.048± 0.017
50 5.82± 1.41 0.058± 0.088 0.41± 0.42 0.45± 0.12 0.017± 0.0085 0.30± 0.13 0.03± 0.016
P2 6.48± 1.45 0.013± 0.013 0.61± 0.21 0.45± 0.17 0.016± 0.0072 0.30± 0.13 0.031± 0.014

Player 2 Replays
All 6.58± 1.67 0.018± 0.021 0.62± 0.21 0.48± 0.14 0.018± 0.0096 0.31± 0.13 0.035± 0.018
50 5.42± 1.64 0.016± 0.012 0.78± 0.11 0.52± 0.14 0.016± 0.0087 0.15± 0.073 0.029± 0.014
P1 5.02± 1.18 0.028± 0.029 0.61± 0.21 0.56± 0.17 0.019± 0.0099 0.23± 0.11 0.034± 0.019

Table 2: The medians and interquartile ranges for the metrics of the RNNs on the “all factions” combined data sets. For each
player’s test set, we report the results for the model trained on all training data (All), the model trained on 50 randomly selected
games (50), and the other player’s full model (P2 or P1). Bolded results are the best for a metric for each test set.

Results
The single-faction-matchup results are shown in Table 1.
This table contains the metrics for each data set, for each
player, separated by method. We report the medians and
interquartile ranges for each metric, because all are non-
normally-distributed for at least some data sets. For micro-
averages over all classes in multi-class classification, pre-
cision, recall, and F1 score are all the same. Therefore, we
report only the F1 score. In the case of non-empty action pre-
dictions, however, these are distinct, so we report all three.

In Table 2, we report the RNN’s results on the combined
all-factions data set, for each player. We report only the RNN
because the other methods have already shown much lower
performance on single factions (as discussed below), and be-
cause RFs ran out of memory on the larger data set. This
table also shows the performance impact of data set size.

We also report tests of the RNN, trained on a particular
player, against the test set from the other player. By com-
paring the cross-trained model with the regular one, we can
determine how much of its predictive power is specific to
the player. The results of this test are shown in Table 2. We
performed a statistical analysis on the non-empty action F1

scores, since they represent a balanced comparison of preci-
sion and recall for the build actions. The F1 scores are non-
normally-distributed, so we used the two-tailed Wilcoxon
Signed Rank Test with paired samples, with α < 0.01. We
found that for both players, the test showed a significant dif-
ference in F1 scores (Z = −7.527, p < 0.01 for P1’s replays
and Z = −5.179, p < 0.01 for P2’s). The effect size is large
for P1 (r = 0.72) and medium for P2 (r = 0.42).

There is similarly a significant difference in non-empty
action F1 scores for the models trained on 50 replays ver-
sus the full models (Z = −7.891, p < 0.01 for P1, Z =
−4.861, p < 0.01 for P2) with large effect size for P1
(r = 0.64) and medium for P2 (r = 0.39).

Discussion
RNNs as a Starting Point for Player Imitation
As expected, the random baseline performs very poorly,
since random guessing is unlikely to mimic a player. On
the other hand, RFs achieve a very high overall F1 score,
which might appear at first to be a positive result. They have,
however, an extremely low recall (below even the baseline)
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Figure 1: The non-empty action F1 score on the validation
set during training for the all games vs. 50 games data sets,
recorded every 10 epochs, for P1 (top) and P2 (bottom).

and high error rate for non-empty actions. This is because
RFs fall victim to the class imbalance between empty and
non-empty actions: they predict empty actions almost all the
time, rather than risking a guess at a build action. Thus, the
RF precisions are high because their extremely rare non-
empty guesses tend to be very certain. This leads to a mis-
leadingly high overall F1 score, when really the RFs are not
modeling the player’s actions well at all. High precision but
low recall indicates that, on the rare occasion where they
would choose to act, RFs would tend to match the player’s
action, but they would fail to act at all in most states. With
21-37% recall for non-empty actions while still achieving
45-78% for all actions, the RNNs much more effectively bal-
ance the prediction of specific actions against empty actions.

While RNNs are by far the most successful of the tech-
niques tested here, their performance still leaves much to be
desired. While 45-78% overall accuracy is much better than
chance, it is far from a perfect mimicry of the player’s strate-
gic decision-making. This is especially evident in the low
non-empty action precision scores, which indicate that the
RNN repeatedly predicts an action incorrectly around the
times when it is predicting it correctly. This may be partly
due to the test setup: the replay is unchangeable. If the AI
guesses a unit to build too early, it will not actually start
that unit’s construction. Thus, the next frame of the replay
will look relatively similar, and the AI might guess the same
action repeatedly. In a real game, the AI would be able to be-
gin construction and immediately return to predicting empty
actions. This hypothesis is borne out by the TWED scores,
which show that, on average, each action is only 5-7 edits
away from the correct sequence.

Moreover, the RNNs achieve approximately 2-5% top-3
error, which means that in all but a few cases, the player’s
actual action is within the top three predictions. Thus, the
RNN could likely be combined with other decision-making
to narrow the set of possible actions to the ones the player
would be most likely to perform. Such hybrid decision-
making could be a fruitful avenue for future work.

When running the RNNs trained for one player on the
other’s replays, we see a decrease in performance, as ex-
pected. Nonetheless, the two models are not entirely unsuc-
cessful in predicting the other player’s actions, which could
indicate either that there are some similarities in how and
when these players tend to build units in similar situations,
or that the model is not yet fully capturing the individual
differences in play, or some combination of the two.

In comparison to the neural-network-based predictions by
Justesen and Risi (2017), our RNNs have a much smaller
top-3 error (∼ 2− 5%, where they report 22.92%± 0.09%).
Additionally, they predict only non-empty actions based on
the current game state, ignoring the sequence and timing,
whereas we incorporate these. Our top-3 error for non-empty
actions is higher (39 and 48% on the full data sets), but this
is measured on the harder problem of predicting precise ac-
tion timing. Finally, we predict the actions of a single player,
whereas they draw their data from many players, providing
them a larger training set of over 2000 replays.

We note that there is a drop in performance from train-
ing on a smaller data set, as shown in Table 2. Though the
RNNs trained on 50 games are still somewhat able to imitate
actions, they are unable to generalize as well as the full mod-
els. In training graphs of their non-empty F1 scores, shown
in Figure 1, we can see that they almost match the full data
set, only falling behind in the final stretch as the larger set
fine-tunes its results. Further testing, preferably by expert
review of games, would be necessary to determine how no-
ticeable the difference in imitation quality is. It may well be
that different goals for imitation, different games, and play-
ers’ play styles will affect the required data set size.

We only tested imitation of two players, which prevents
a claim of generalization to all players and factions. We do
believe, however, that the size and diversity of the two tested
data sets provide some indication of generalizability. Each
data set contains a wide variety of maps, faction match-ups
and game lengths. Therefore, we claim that this RNN-based
approach can be useful as a starting point for future research.

Future work could explore improving on the game state
features, iterating on the RNN structure, or switching to
another learning technique such as inverse reinforcement
learning (Abbeel and Ng 2004). Another idea might be to
filter each frame’s actions to those that are actually feasible.

Limitations
Several limitations temper these findings and should inform
future study. First, as previously mentioned, the RNN’s lack
of precision in determining exactly when to build a unit is
particularly in need of improvement. We have not tested our
predictions in a complete AI agent, which would be nec-
essary to determine whether its decisions actually appear
player-like. Also, importantly, our replays contained all state



data, but a real agent might not have access to perfect infor-
mation. Future work should incorporate hidden information.

Moreover, our test set is small. We focused on two spe-
cific players in order to test, in depth, similar numbers of
replays from each, but this limits our claim to generality in
our results. We cannot claim that our model would definitely
generalize to additional factions, players, or strategies that
did not appear in our data set. Future tests should include
a larger number of players, and especially those who play
other factions. We are also predicting only unit construction
actions; to fully imitate players, we would need to predict
movement orders, requiring additional considerations such
as spatial reasoning. Finally, if we can solve the challenges
of fast forward simulation of game states and of evaluating
the resulting AI’s similarity to the player’s behavior, it would
be useful to test imitation learning-based approaches.

RNNs require significant time and resources to train be-
fore they can be deployed – though still within the realm of
possibility for a single developer with a sufficiently power-
ful computer. With these data sets, training over 4000 epochs
required approximately a day of real time on a single com-
puter with an NVidiaTM GTX 1080 or 980 GPU.

Ethical Considerations for Player Imitation
In performing this work, and especially in future work as
techniques continue to improve, we have a responsibility
to consider many ethical questions. We foresee potential
misuses of player imitation: companies could use it to de-
anonymize a player’s games under multiple aliases, to de-
tect and ban accounts shared between friends or family,
or to build technology that replaces or fails to adequately
compensate playtesters or other workers. If applied outside
of games, these misuses of imitation could have an even
broader impact. While player imitation has beneficial pur-
poses, if used ethically for more adaptive AI, inclusive game
design for players with disabilities, and more, these do not
absolve researchers from considering potential abuses.

Even when using player imitation for beneficent purposes,
we must consider autonomy and justice as well (Metcalf
and Crawford 2016). How Common Rule principles apply to
data science is still in discussion in the research community,
but the uncertain status of data collected through telemetry
and public submission necessitates more ethical considera-
tion, not less (Fairfield and Shtein 2014). When we collect
data for player imitation, it is important that players are in-
formed and consent, and that we enable them to rescind con-
sent and delete their data. Current game license agreements
do not provide sufficient protections (Canossa 2014). Per-
haps the most effective option would be to develop player
models that can be trained and deployed on the player’s own
computer, without providing data to a central server. Protect-
ing privacy should be a focus of future imitation research.

Justice also requires that players who are imitated be
drawn from many communities, backgrounds, and abilities.
We must ensure even distribution of the work and risks
to those who provide replays, and the benefits to players.
Marginalized communities are at more risk of abuse and ha-
rassment, even when efforts are made to evenly represent
them (Fairfield and Shtein 2014). Mitigating this requires

intentionally reaching out to and working with them, as em-
powered political agents, not merely as subjects. It means
fairly compensating those who provide their data, protecting
their identities, and supporting them against any abuse that
results from participation. It also means ensuring that the
resulting game features benefit people in those communi-
ties. For a more comprehensive discussion of ethics in player
modeling, see Mikkelsen, Holmgård, and Togelius (2017).

Finally, player imitation risks bias and harm from the
data and the designers’ modeling choices. Repeated anal-
yses show that systems are biased by the input data and by
its transformation into input features (Mikkelsen, Holmgård,
and Togelius 2017). If player imitation is provided to all
players for training, intentionally or unintentionally abusive
players may cause the system to imitate their abusive be-
havior. Even barring abuse, designers may choose data or
transformations that bias the imitation towards their own
preferred features or play styles, leading to poor experiences
for players with different preferences or abilities. Future re-
search must interrogate and account for these biases.

Conclusion
Prior game AI research has sought to build generically
human-like agents and to model play-styles based on re-
play data. For automated playtesting or for modeling agents
on specific players, however, a more individualized player
imitation approach is necessary. In automated playtesting,
such a model could be valuable for designers to gain insight
into how certain players might interact with their content. It
could also inform an opponent or cooperative model to help
AI agents develop a “theory of mind” about the player.

StarCraft, with its mix of high-level strategy and fast-
paced, low-level unit control, is a difficult test for player
imitation. In this study, we examined player imitation based
on a random baseline, random forests, and recurrent neural
networks. RNNs were partially successful in predicting the
strategic actions of a specific player, even with limited data
and in all faction matchups. There is still significant room
for improvement in precision, however. Hybrid decision-
making that better incorporates domain knowledge might
lead to significant advances. We hope that these experiments
will be a step on the path to robust player imitation tech-
niques to make games more accessible and adaptive to peo-
ple with various abilities and interests. We also encourage
future research to grapple with the ethical implications of
imitation, especially with issues of privacy and equity.
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