
Machine Learning State Evaluation in Prismata

Rory Campbell and David Churchill
Memorial University, St. John’s, NL, Canada

Email: dave.churchill@gmail.com,r.campbell@mun.ca

Abstract
Strategy games are a unique and interesting testbed for AI
protocols due their complex rules and large state and action
spaces. Recent work in game AI has shown that strong,
robust AI agents can be created by combining existing tech-
niques of deep learning and heuristic search. Heuristic search
techniques typically make use of an evaluation function to
judge the value of a game state, however these functions have
historically been hand-coded by game experts. Recent results
have shown that it is possible to use modern deep learning
techniques to learn these evaluation functions, bypassing the
need for expert knowledge. In this paper, we explore the
implementation of this idea in Prismata, an online strategy
game by Lunarch Studios. By generating game trace training
data with existing state-of-the-art AI agents, we are able
to learn a more accurate evaluation function which when
combined with the existing Prismata Hierarchical Portfolio
Search system, produces a new AI agent which is able to
defeat the previously strongest agents.

Introduction
Developing sophisticated AI for computer strategy games
has historically presented many interesting challenges due
to the complexity in their decision making. These games
often have state and action spaces which rival and fre-
quently exceed that of their strategy board-game ancestors,
such as Chess and GO. The amount of possible actions
available in strategy games may be so large that classic
tree search strategies and even state-of-the-art techniques
such as Monte Carlo Tree Search (MCTS) cannot be used
in real time.

Lunarch Studio’s turn-based strategy game Prismata im-
plements a search technique called Hierarchical Portfolio
Search (HPS), which reduces the action space of Prismata
in an effort to mitigate the deficiencies of other searching
algorithms. Even with the action space reduction, HPS is
unable to search the entirety of the remaining tree and,
as such, needs to perform an evaluation procedure on non-
terminal leaf nodes which will be encountered at the end of
a search. The process of evaluating leaf nodes, called state
evaluation, was initially done using a hard-coded heuristic,
but this heuristic was time-consuming to construct. It was

Copyright c© 2019 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

found that a technique known as symmetric playout, which
involved conducting games between players with identical
policies from leaf nodes, produced better results than the
hard-coded heuristic but developing players to perform
these playouts was also a time-consuming process.

In this paper, in an effort to improve state evaluation in
Prismata, we present a machine learning solution where,
instead of playing out a full game from leaf node states,
we perform inference on a neural network trained on data
from games between the strongest available players. We test
this approach against other advanced Prismata AI agents by
entering them into a round-robin tournament and assigning
them a score based on their win-rate. We conclude with a
few possibilites for future research directions.

Prismata
Game Description
Prismata is a strategy game developed by Lunarch Studios
which combines "concepts from real-time strategy games,
collectible card games, and table-top strategy games". Be-
fore the name Prismata was given to the game, its internal
working title was MCDS, which stood for: “Magic the
Gathering, Chess, Dominion, StarCraft"’, the four games
which inspired its creation and from which its gameplay
elements are borrowed. Before we discuss any AI system
for Prismata, it is first necessary to understand its basic
game rules and game theoretic properties. A more detailed
description of the game theoretic properties of Prismata can
be found in (Churchill and Buro 2015), with the full game
rules available on the official Prismata website1.
Prismata is a Two Player, Deterministic, Alternating

Move game with Perfect Information. While Prismata does
have some single player puzzle content, its main com-
petitive form of play is one vs. one, in which players
alternate taking turns with their opponent until the game
is over, similar to traditional board games such as Chess
or Checkers. Games can be played with or without a time
limit, however unlike Chess the time limit is applied to
individual turns instead of the full game. If the time limit
expires for a given turn, instead of a game loss, the turn
is simply passed immediately to the opponent. Players in
Prismata each control a number of units, with each unit
having a specific type such as a Drone or an Engineer,

1http://www.prismata/net



Fig. 1: A sample opening state for a game of Prismata.

similar to most popular RTS games such as StarCraft which
has unit types such as Marine or Zergling. Also similar
to RTS, players start the game with a few economic units
which can produce resources for the player. These resources
in turn can be spent on purchasing additional units which
come in one of 3 main flavors: economic units (produce
resources), aggressive units (can attack), or defensive units
(can block incoming attack). The possible outcomes in
Prismata are win, loss, or draw. Victory is achieved by
destroying all of the units of the opposing player. Both
players have access to all of the game information at all
times, with all units and resources owned by both players
being globally visible. There are no mechanics such as
decks, hands, or "fog of war" to conceal the information
of any player in the game.

Each turn of Prismata consists of a player performing a
number of individual Actions, with a player’s turn ending
when they choose to stop acting and pass the turn (or if
their turn timer expires). These player actions can be one
of the following: purchase a unit of a given type, activate
a unit ability, assigning incoming damage to a defending
unit, assigning own damage to an enemy unit, or ending the
current turn. Turns in Prismata are further broken down into
an ordered series of game phases in which only actions of
a certain type can be performed: 1) defense phase - damage
is assigned to defenders, 2) action phase - abilities of units
are activated, 3) buy phase - new units are purchased, 4)
breach phase - damage is assigned to enemy units. These
phases are similar to other strategy games such as Magic:
the Gathering’s untap, upkeep, attack, and main phases,
etc. A turn in Prismata therefore consists of an ordered
sequence of individual actions, which in this paper we will
call a Move. Each player has their own pool of resources in
Prismata, which are produced by unit actions. There are 6
resource types in Prismata: gold, energy, red, blue, green,
and attack, which players can use in a variety of ways to
perform actions such as the consumption of resources in
order to purchase additional units or activate unit abilities.

A screenshot of the beginning state of a game of Prismata
can be seen in Figure 1. In this image, Player 1’s units on
the bottom half of of the game screen, with Player 2’s units
on the top half of the screen. A shared pool of buyable
unit types is visible on the left hand side of the screen,

with currently purchasable units highlighted in green. Each
player’s resources are visible at the far edge of their side
of the screen. To activate the ability of a given unit, it is
clicked with the mouse cursor. All actions can be undone
(effects reversed) by clicking a second time on the same
game element.

Combat in Prismata consists of two main steps: Attacking
and Blocking. Unlike games like Hearthstone, units do not
specifically attack other units, instead a unit generates an
amount of attack which is summed with all other attacking
units into a single attack amount. Any amount of Attack
generated by units during a player’s turn must be assigned
by the enemy to their defensive units (blocked) during
the Defense phase of their next turn. When a defensive
player chooses a blocker with h health to defend against a
incoming attack: if a ≥ h the blocking unit is destroyed
and the process repeats with a − h remaining attack. If
a = 0 or a < h the blocking unit lives and the defense
phase is complete. If a player generates more attack than
their opponent can block, then all enemy blockers are
destroyed and the attacking player enters the Breach phase
where remaining damage is assigned to enemy units of the
attacker’s choosing.

The main strategic decision making in Prismata involves
deciding which units to purchase, and then how to most
effectively perform combat with those units. The task of
the AI system for Prismata is therefore do decide on the
best move (ordered sequence of actions) to perform for any
given turn.

Prismata AI System
In this section we will introduce the AI challenges in
Prismata, as well as introduce the existing AI system in
Prismata which is based on a heuristic search technique
known as Hierarchical Portfolio Search.

AI Challenges
Players in Prismata start with just a few units, and quickly
grow armies that consist of dozens of units and resources by
the middle and late game stages. Since a state of the game
can consist of almost any conceivable combination of these
units and resources, the state space of Prismata is exponen-
tially large with respect to the number of purchasable units
in the game. A conservative lower bound of 1074 possible
states was calculated for Prismata (Churchill and Buro
2015), with a much higher number being much more real-
istic. In addition to this, a player turn in Prismata consists
of an ordered sequence of actions, leading to a similarly
exponential number of possible moves for a player on any
given turn. These exponential state and action spaces pose
challenges for existing search algorithms, which was why
the Hierarchical Portfolio Search algorithm was created
specifically for the Prismata AI engine, and is explained
in the following section.

Hierarchical Portfolio Search
Hierarchical Portfolio Search (HPS) (Churchill and Buro
2015) is a heuristic search algorithm that forms the basis
of Prismata’s existing AI system, and was designed specifi-
cally to tackle searching in environments with exponentially

2



Algorithm 1 Hierarchical Portfolio Search
1: procedure HPS(State s, Portfolio p)
2: return NegaMax(s,p,maxDepth)
3: procedure GenerateChildren(State s, Portfolio p)
4: m[] ← ∅
5: for all move phases f in s do
6: m[f]← ∅
7: for PartialPlayers pp in p[f] do
8: m[f].add(pp(s))
9: moves[] ← crossProduct(m[f] : move phase f)
10: return ApplyMovesToState(moves,s
11: procedure NegaMax(State s, Portfolio p, Depth d)
12: if (D == 0) or s.isTerminal() then
13: return Eval(s) ← state evaluation
14: children[] ← GenerateChildren(s,p)
15: bestVal ← −∞
16: for all c in children do
17: val ← −NegaMax(c,p,d-1)
18: bestVal ← max(bestVal,val)
19: return bestVal

Defense Ability Buy Breach
Min Cost Loss Attack All Buy Attack Breach Cost
Save Attackers Leave Block Buy Defense Breach Attack

Do Not Attack Buy Econ

TABLE I: A sample portfolio for Prismata

large action spaces. The main contribution of HPS is that
it significantly reduces the action space of the problem by
searching only over smaller subsets of actions which are
created via a Portfolio. This Portfolio is a collection of
sub-algorithms created by AI programmers or designers,
which each tackle specific sub-problems within the game.
An example Portfolio can be seen in Table I - since a turn
in Prismata is broken down into 4 unique phases, the port-
folio consists of sub-algorithms (called Partial Players) of
varying complexity which are capable of making decisions
for each of these phases. For example, the defense phase
portion of the Portfolio has an exhaustive search which
attempts to minimize the number of attackers lost when
defending, the buy phase contains a greedy knapsack solver
which attempts to purchase the most attacking units given a
number of available resources, while the ability phase has
a script which simply attacks with all available units.

Once the portfolio has been formed, the turn moves are
generated by simply taking all possible permutations of the
actions decided by the partial players in the portfolio. In
the example in Table I, this would result in a total of 2×
3 × 3 × 2 = 36 total moves. This process is shown in
the GenerateChildren function on line 3 of Algorithm 1.
The final step of HPS is to then apply a high-level search
algorithm of your choosing (Minimax, MCTS, etc) to the
moves generated by the portfolio. The full HPS algorithm is
shown in Algorithm 1, with NegaMax chosen as the search
algorithm for its compact description. The Prismata AI’s
implementation uses Alpha Beta as its search algorithm,
which is functionally identical to NegaMax.

State Evaluation
As with all challenging environments, the state space of
Prismata is far too large for the game tree to be exhaustively
searched, and therefore we need some method of evaluating
non-terminal lead nodes in our search algorithm. If we
had an oracle that could determine the winner of a game
from any given state then we would only need to search
to depth 1 to determine the optimal action, however this
is obviously not the case, and so we need to devise some
custom function which can evaluate a state. Decades of AI
research has shown that more accurate heuristic evaluation
functions produce stronger AI agents (Schaeffer 1989), so
the construction of this function is vitally important to the
strength of the AI. The call to the evaluation function in
HPS can be seen on line 13 of Algorithm 1, for which any
method of evaluating a state of Prismata can be used - as
long as it returns a larger positive number for states which
benefit the player to move, and a larger negative number
for states which benefit the enemy player.

Throughout the history of games AI research, these
evaluation functions have been mostly hand-coded by do-
main experts using knowledge of what may or may not
be important to a given game state. For example, early
Chess evaluations involved heuristics such as assigning
point values to piece types and board positions, and then
summing those values for a given player. The original
heuristic used for the Prismata AI system was similar to this
- the resource values for each unit owned by each player
were summed, and the player resource sum difference was
calculated, with the player having the highest sum being
viewed as in a favorable position. This type of evaluation
however is flawed, as it fails to take into account the
strategic position that those units may be in - an incredibly
important part of the equation that is left out.

After experimental testing, a better method of evaluation
for Prismata was found: game playouts. A simple scripted
AI agent was constructed (called a Playout Player) and was
used to evaluate a state. From a given state, both players
were controlled by the same playout player until the end of
the game, with the intuitive notion that if the same policy
controlled both players, then the resulting winner was
probably in a favorable position. This method then returns
a value for who won the playout game: 1 if the player to
move won, -1 if the enemy player won, or 0 if the game
was a draw. Even though this method of evaluation was
approximately 100 times slower than the previous formula-
based evaluation, resulting in fewer nodes searched by HPS
- the heuristic evaluation was so much more accurate that
the resulting player was stronger, winning more than 65%
of games with identical search time limits. In many games,
this delicate balance between the speed of the evaluation
function and its prediction accuracy plays a vital role in
overall playing strength, and the overall effectiveness of
the evaluation function can only be measured by playing
the AI agents against each other with similar time limits.

In the past few years, several world-class game AI agents
have been created which have made use of machine learning
techniques for evaluating game states. For example, the
DeepStack (Moravčík et al. 2017) and AlphaGo (Silver et
al. 2016) systems were able to use deep neural networks to

3



predict the value of a state in the games of Poker and Go,
respectively. In the following sections, we will discuss the
main contribution of this paper: using deep neural networks
to learn to predict the values of Prismata states, and using
this to construct an AI agent which is stronger than the
current system.

Learning State Evaluation
In this section we will discuss how we learned a state
evaluation model for Prismata. We will discuss the overall
learning objectives we want to accomplish, the methods
used for gathering the training data, the techniques and
models used to do the learning, the state representation used
to encode the Prismata states, as well as the implementation
details of all methods involved.

Learning Objectives
Our objective in learning a game state evaluation is to
construct a model which can predict the value of any given
input state. In our case, the value of a state is correlated to
who the winner of the game should be if both players play
optimally from that state until the end of the game. For
simplicity, we will define the output for our model to be a
single real-valued number in the range [-1, 1]. We want our
model to predict the value of 1 for a state which should be
a definite win for the current player of a state, the value of
-1 for a state which is a definite loss for the current player
(win for the enemy), and a value of 0 to a state which is a
definite draw.

Learning state evaluation has advantages and disadvan-
tages over the evaluation techniques discussed previously.
The main advantages of learned prediction are: 1) learning
can occur automatically without the need to specifically
construct evaluation functions or playout player scripts, and
2) theoretically one can learn to predict a much stronger
evaluation than hand-coded methods if enough quality
training data is given. The main disadvantages are: 1) if
the game is changed (rules or unit properties modified in
any way) then we may have to re-train our models from
scratch, and 2) learning requires access to vast amounts of
high quality training data, as we cannot learn to predict
anything more accurately than the samples we are given to
learn from.

Data Gathering
The previously listed disadvantage of obtaining high quality
training data poses a unique problem for complex games.
Unlike traditional supervised learning tasks such as classi-
fication, in which we are typically given access to data sets
of inputs along with their correctly labeled ground-truth
outputs, it is difficult to obtain who the absolute winner
should be from a given state of a complex game. After all,
if we were able to determine the true winner from a given
state, then the AI task of creating a strong agent would have
already been solved. Therefore, the best that we can do is
create a model to predict the outcome of a game played by
the best known players available at any given time.

Historically, when performing initial supervised learning
experiments, game AI researchers have turned to human
game replay data as the benchmark for strong input data

- with the outcomes of those games as the target output
values. For example, Google DeepMind initially learned
on human replay data for both its AlphaGo and AlphaS-
tar(Vinyals et al. 2019) AI systems - since at the time of
initial learning, human players had a far greater skill level
than existing AI systems for those games. The same is
also true for Prismata - expert human players can easily
defeat the current AI even on its hardest difficulty settings.
Therefore, our best option for learning would be to use
these expert human replays for our training data, however
we first need to determine: 1) if they are available for use,
and 2) whether there are enough games to train the models.

Prismata saves every game ever played by human players,
with approximately 3 million total replays currently exist-
ing. This number however is deceptive, as Prismata under-
goes regular game balance patches every few months with
major changes to unit properties. Learning to predict game
outcomes on replays which contain units with different
properties than the current version of the game could yield
results which are no longer accurate. For example, certain
actions which could be performed on an older patch such
as purchasing a unit for a given number of a resources may
no longer even be legal with the same number of resources
on the current patch. Another factor limiting the usability
of these replays is the rank of the players in the game. Since
we would only want to use replays of high ranked players,
this would cut approximately 60-80% of the replays from
the data set as not being of high enough quality to use for
training. On top of this, there is also a technical reason why
these human replays could not be used for the training data
in this paper: the format in which they are recorded. In order
to save storage space, Prismata replays are not stored as a
sequence of game state descriptions, but are instead stored
as an ordered sequence of player actions. Each action is of
the format (TimeCode, PlayerID, ActionTypeID, TargetID),
where the TargetID indicates the unique instance id of a unit
in the game, which is assigned by the game engine based on
some complex internal rules. When a player views a replay
in the official game client, the client is able to simulate
these actions from the beginning of the game to recreate a
game state and display it for the user. Unfortunately, this
process of recreating the game state by the official game
engine is not usable by us in a manner that would allow
for these game states to be written to a file to be used as
a training data set, and the construction of such a system
would be well outside the scope of this publication. Based
on all of these factors, the human replays cannot be used
as a training set at this time.

Since it is not practical to train a model based on the
best available human replays, we instead train a model
using the best available AI players. By playing an AI
agent against itself, we can generate as many game state
traces as are required, with the learning target being the
eventual winner of that game. The AI agents used for
the generation of the test data are agents that currently
exist in the Prismata AI engine, namely: ExpertAI and
Master Bot. Both of these agents use an Alpha Beta search
implementation of HPS with a symmetric playout state
evaluation, with the difference being that ExpertAI does
a fixed depth-1 search, while Master Bot searches as many

4



nodes as it can in a 3 second iterative-deepening Alpha
Beta search. The main idea here is that the current playout
player used by Master Bot is a simple scripted agent, meant
to be fast enough to be used by the heuristic evaluation
within a search. If we can learn to predict the outcome of
a Master Bot game for a given state, then we can effectively
replace the playout player evaluation by a learned Master
Bot evaluation, resulting in a much stronger evaluation
function, which hopefully leads to a better overall agent.
We can leave these AI agents to play against themselves
and generate game traces for as long as we want, providing
ample data for learning.

Learning Method
In recent years, the vast majority of machine learning
breakthroughs in AI for games have come through the
use of Deep Neural Networks (DNN). AlphaGo, AlphaGo
Zero2, AlphaStar, DeepStack, and OpenAI Five3 each make
use of DNNs in their learning. Therefore, we have chosen
to use DNNs for our supervised learning task. The details
of this network will be given in a future section.

State Representation
Before we can actually learn anything, we must first decide
on the structure of the input and output to our supervised
learning task. As we are using DNN for learning, it is
advantageous to devise a binary representation for our game
states, which is the preferred input format for successful
learning in most modern DNNs. It remains for us now to
create a function which given a game state, translates it
into a binary string for input into a DNN. Also, as this
data will be used as input to a neural network, the state
representation must be of uniform length regardless of the
state of the game, which may vary considerably in number
of units, resources, etc.

For many AI agents learned on games, such as those
trained by DeepMind to play Atari 2600 games, in some
cases defeating expert human players, the game was sum-
marized visually, using the raw pixels of the game’s graph-
ical output. This approach lends itself to learning with
convolutional neural networks (CNN), a popular tool in
developing strong game AI, used in research on games as
complex as Starcraft II. Unlike Atari 2600 games and Star-
craft, Prismata lacks meaningful geometry; unit placement
is fixed and has no effect on gameplay, and so CNNs will
not be as important to use in our task.

Several state representation were tested over the course
of this research, however describing each of them is outside
the scope of this paper. Through experimental trial and
error, we arrived at a representation which appears to be
a good balance between representing the strategic nuances
of a state and the size / complexity of the DNN required
to learn on it effectively. Since we are using this network
as an evaluation in a search algorithm, the feed-forward
prediction speed of the network is of vital importance as
it will be called possibly thousands of times per search
episode.

2https://deepmind.com/research/alphago/
3https://openai.com/five/

The final representation we used for our experiments
encodes 3 main features of the state: the current resource
counts for each player, the current unit type counts for
each player, and the current player to move in the state.
This encoding discards information such as which units
may be activated, individual unit instance properties, etc,
but since the states are all recorded at the beginning of
each turn when units are not yet activated, much of the
effect of this information loss is alleviated. Our final binary
representation is as follows:

[P,U11...U1n, R11...R1m, U21...U2n, R21...R2m],

where P is the current player to move at the given state
(0 or 1), UXi is the current count of unit type i for player
X , and RXi is the current count of resource i for player
X . These counts are stored as one-hot encodings of their
associated integer values with a maximum length of 40, a 1
in the index corresponding to the count, and a 0 everywhere
else. The reason for one-hot encoding is that due to the
combinatorial nature of Prismata, state outcomes can vary
dramatically even when attack or defense values differ by
1, which is the difference between killing an opponent’s
last defender or it surviving to the next round.

Network Structure
We constructed a network with 2 hidden layers, with 512
neurons in each layer. We chose an initial learning rate of
0.00001, based on initial empirical results. Using a higher
learning rate can lead to a process called overshooting
which lessens the effectiveness of training a model. To
supplement the lower learning rate, our network also uses
an Adam optimizer, which implements the procedures of
Adaptive Gradient Algorithm (AdaGrad) and Root Mean
Square Propogation (RMSProp), meaning that Adam will
adjust the learning rate for us, a process which has been
shown to outperform other automatic learning rate adjust-
ment protocols.

Tensorflow and Keras
There are a variety of open-source machine learning li-
braries which we could rely on for building and training
our model and we have chosen Tensorflow for this project.
Tensorflow was developed by Google and has an abundance
of both official and unofficial documentation. On top of
Tensorflow, we are using a high-level API known as Keras
which has a python wrapper making the construction of
our network very clean from a coding perspective. Using
Tensorflow also gives us access to the TensorBoard visu-
alizations, a set of useful graphical tools for observing a
model’s structure and the status of it’s learning metrics.

Inference on the Trained Model
Since the Prismata AI engine is written in C++, we need
to perform inference on our trained model within that
C++ system. As of writing, Keras has no official C++
libraries, and so we need to use additional libraries to
perform the inference with C++. Frugally Deep4 is an open-
source, header only library designed specifically for calling

4https://github.com/Dobiasd/frugally-deep

5



0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0 100 200 300 400 500 600 700 800 900 1000

A
cc

ur
ac

y

Time

Training Accuracy

Fig. 2: Training accuracy over time. Unfortunately we are
unable to explain the dip in accuracy at the end.

Keras networks in a feed-forward capacity from C++. The
downside to this approach is that frugally deep performs
all its computations on a single-core of CPU and does not
support GPU computation at all. Unfortunately, we could
not find any way to perform a GPU implementation of the
feed-forward of our network inside C++ with the Prismata
AI engine, therefore we believe all results could be greatly
improved once we overcome this hurdle.

Experiments and Results
Network Training
In order to train out network, data was generated from
500,000 games of Master Bot vs. Master Bot, with the game
settings of Base Set units + 8 random units at the start of
each game. With a typical game length of a approximately
30 turns, and one sample generated each turn of each game,
this resulted in 15,090,199 training samples for our neural
net in total. Figure 2 shows the learning of the model
over time generated in gnuplot from a csv recorded using
TensorBoard5. The grey data points represent all recorded
accuracy metrics with a line of best fit drawn in red. The
x-axis represents the 1000 equally time-spaced accuracy
reports from TensorBoard, with a total training time of 18
hours 41 minutes.

Experiment 1: Evaluation Speed
The first experiment we performed was a simple test of
the relative speed of each of the state evaluation methods
available. Three evaluation methods were tested:

1) Resource: The hard-coded resource-based heuristic
state evaluation used in the original version of the
Prismata AI. Each resource was given a value (rela-
tive to the base gold resource) by one of the game’s

5https://www.tensorflow.org/guide/summaries_and_
tensorboard

Evaluation Method Eval / Sec
Resource 8010
Playout 147
Learned 1766

TABLE II: Evaluations per second of each method

Opponent Score
Resource 0.664
Playout 0.588

TABLE III: Shown is the score of an AI agent using the
Learned evaluation function vs. agents using the Resource
and Playout evaluation methods.

original designers and programmers Will Ma. The
evaluation for a player was then simply the sum of the
resource costs of all units that a given player owned.
If one player has a higher resource cost sum, then
they are considered to be at an advantage by this
heuristic. The exact formula is omitted at the request
of Lunarch Studios.

2) Playout: Evaluation done by symmetric playout of the
current game state to the end of the game.

3) Learned: Our trained neural network model feed
forward prediction time.

Each evaluation model was used in a sample Alpha Beta
HPS player with a one second time limit. Table II shows
the results for how much evaluations were performed on
average in each one second turn for each evaluation. From
these results we can see that the Resoruce formula is by far
the fastest evaluation, but also probably the least accurate.
The Playout evaluation was the previous best evaluation
method, but far slower than the resource heuristic. The
Learned model lies in between these two in terms of speed,
and if the accuracy is sufficiently high, should yield a
stronger HPS player than with the other evaluation methods.

Experiment 2: AI vs. AI
In order to evaluate the overall quality of the new learned
evaluation method, we ran a tournament of AI vs. AI games
using AI players with several different settings. A total of
3 AI players were tested, each using HPS with Alpha-Beta
search with a time limit of 1000ms each, each of which
using one of the evaluation methods: Resource, Playout,
or Learned. In total, 12800 games (6400 per matchup)
were played, with the resulting scores displayed in Table
III. The score formula was simply the number of wins +
draws/2, such that a score of 0.5 indicates both AI agents
are of similar playing strength, with a score higher than
0.5 indicating the Learned player had a winning average
against the other player.

Table III shows the score for the Learned evaluation vs.
both the Resource evaluation and the Playout evaluation.
Our new Learned evaluation had a win rate higher than
50% vs. the previous best evaluation methods, indicating
that the new evaluation was indeed stronger overall than
the previous best.

6



Conclusions and Future Work
In this paper we have introduced a neural network model
for learning to predict state evaluations in Prismata, an
online strategy game. We trained this model on game traces
generated by the existing best AI agent for the game:
Master Bot, which uses Hierarchical Portfolio Search with
a playout evaluation. By using the state evaluation model
trained on these Master Bot games, we were able to use it
to replace the previous Master Bot evaluation function, and
produce an overall stronger AI agent than had previously
existed.

In the future, we have several ideas to further increase the
strength of the learned evaluation agent. First, we can con-
tinue to make improvements to both the network topology
and state representation in order to produce a smaller, more
accurate model, which will result in both more evaluations
per second, and and overall better AI agent. Next, we
believe that this process can be iterated: now that we have a
stronger AI agent than the original Master Bot, we can train
a model based on this new agent, which should produce
a better overall evaluation function, which in turn should
produce a better agent. We feel that eventually this may
yield to diminishing returns, but it should work in the
short term to produce a stronger agent overall. Lastly, we
would like to improve our agent even further by learning
of policies for the entire game of Prismata, not limiting
ourselves to mere evaluation functions.

References
Churchill, D., and Buro, M. 2015. Hierarchical portfolio
search: Prismata’s robust ai architecture for games with
large search spaces. In Proceedings of the Artificial In-
telligence in Interactive Digital Entertainment Conference.
Moravčík, M.; Schmid, M.; Burch, N.; Lisỳ, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science 356(6337):508–513.
Schaeffer, J. 1989. The history heuristic and alpha-beta
search enhancements in practice. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 11(11):1203–
1212.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of Go with deep neural networks
and tree search. Nature 529(7587):484–489.
Vinyals, O.; Babuschkin, I.; Chung, J.; Mathieu, M.;
Jaderberg, M.; Czarnecki, W. M.; Dudzik, A.; Huang,
A.; Georgiev, P.; Powell, R.; Ewalds, T.; Horgan, D.;
Kroiss, M.; Danihelka, I.; Agapiou, J.; Oh, J.; Dalibard,
V.; Choi, D.; Sifre, L.; Sulsky, Y.; Vezhnevets, S.; Mol-
loy, J.; Cai, T.; Budden, D.; Paine, T.; Gulcehre, C.;
Wang, Z.; Pfaff, T.; Pohlen, T.; Wu, Y.; Yogatama, D.;
Cohen, J.; McKinney, K.; Smith, O.; Schaul, T.; Lilli-
crap, T.; Apps, C.; Kavukcuoglu, K.; Hassabis, D.; and
Silver, D. 2019. AlphaStar: Mastering the Real-Time
Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/.

7


