
Second Workshop (W1) on 
AI in Adversarial Real-Time Games

Co-organizers: M. Buro and S. Ontañón

4 submissions, 3 accepted, 2 invited talks

8 PC Members

14 Attendees

https://www.cs.ualberta.ca/~mburo/aiide14ws



StarCraft



Activities

● Paper Session                                         [1:30h]
● Invited Talks                                             [1:40h]
● StarCraft Competition Report + Replays [1:10h]

[ Dave Churchill ]

● Group Discussion                                     [0:45h]
● Workgroups + Reporting                          [1:30h]
● Dinner 



Paper and Invited Talk
Summaries



Building Placement Optimization in 
Real-Time Strategy Games

• Authors 
– Nicolas Barriga, Marius Stanesu, Michael Buro

• Premise
– Building placement is key in RTS games, but 

current bots don't do a good job
• Approach

– Genetic Algorithm explores space of building 
placements

– Game simulator (SparCraft) predicts the outcome 
of battles for given building configurations



Building Placement Optimization in 
Real-Time Strategy Games

• Results
– Between 35 to 68% 

of losses turned 
into wins 

– Comparable to 
human building 
placement 
performance (from 
replays)



Sequential Pattern Mining in StarCraft:Brood 
War for Short and Long-Term Goals

• Authors 
– Michael Leece, Arnav Jhala

• Premise 
– Most AI solutions for RTS games require a significant 

amount of hand-crafting. Can we learn those from experts 
automatically?

• Solution
– Generalized Sequential Patterns (GSP)
– General algorithm for mining frequent patterns from 

sequences
– 500 professional-level StarCraft replays 



Sequential Pattern Mining in StarCraft:Brood 
War for Short and Long-Term Goals

• Results
– Many interesting 

patterns detected: 
build orders, action 
spamming, army 
movement

• Next step
– Learn patterns to be 

used as methods in 
HTN planning (into a 
bot)



High-Level Representations for Game-Tree 
Search in RTS Games

• Authors 
– Alberto Uriarte, Santiago Ontañón

• Premise 
– RTS games are too complex for game tree search
– Can we abstract the game and use game tree search at this 

abstract level? Will search results still be meaningful?
• Approach

– Proposed four different abstractions of the game state and used 
them to test game tree search (MCTSCD) in full-game scenarios.

– Built a simulator that rolls the world forward using the 
abstractions



High-Level Representations for Game-Tree 
Search in RTS Games

• Results
– Type of abstraction 

influences simulator 
accuracy

– Impacts gameplay 
performance

– Better than built-in AI
– Worse than existing 

scripted approaches 
(from StarCraft 
competition)

andexperimentswithUCT consideringdurationsandaPort-
folioGreedy Search; showinggoodresults in larger combat
scenarios thanbefore. Ontañón(Ontañón2013) presenteda
MCTS algorithm called NäıveMCTS specifically designed
for RTS games, and showed it could handle full-game, but
small scaleRTSgamescenarios. Somework hasbeendone
also usingGenetic Algorithms andHighClimbingmethods
(Liu, Louis, andNicolescu 2013) or Reinforcement Learn-
ing(JaideeandMuñoz-Avila2012).

High-level Abstraction inRTSGames
Thekey idea of thedifferent state abstractions explored in
thispaper istofirstsimplify thegamemapbydividingit ina
setof regions. Specifically, asinourpreviouswork (blinded
for peer review (XXX 2014)), we used Perkins algorithm
(Perkins 2010), implemented in theBWTA library, for this
purpose. Since themap is invariant through all the game
we only need to compute this once. With this region de-
composition now thecombat units (and themainbases) are
groupedbyunit typeandregion. For eachgroupwecapture
the following information: Player (which player controls
this group), Type (type of units in this group), Size (num-
ber of units forming this group.), Region (which region is
this group in), Order (which order is this group currently
performing), Target (theID of thetarget region) andEnd (In
whichgameframeis theorder estimated tofinish).

Basedonthisidea,weproposefourdifferentabstractions:

• A-RC: This is our baselineabstraction, and corresponds
to the one used in our previous work (blinded for peer
review (XXX 2014)). Similar to theabstraction proposed
bySynnaeve(SynnaeveandBessière2012), inadditionto
the regions returned by Perkins’ algorithm. Weadd one
additional region for each chokepoint in the map (with
center at thecenter of thechokepoint, andacircular area
of the samediameter as the chokepoint). Weonly con-
sider military units in this abstraction, although for the
specific case of StarCraft, we also add the main bases
(TerranCommandCenters, etc.), since it is necessary for
theAI toknowwheretosendunits toattack.

• A-RCB: SameasA-RC, butwealsoaddall thebuildings
inthegame.

• A-R: Like A-RC, but without having additional regions
for chokepoints. Inthiswaywehaveasimpler high-level
map representation. Toevaluatetheimpact of thesesim-
plificationwecomputedthenumberof nodes, theaverage
connectivity and thediameter of thegenerated graph are
showninTable1.

• A-RB: LikeA-R, but also adding all thebuildings in the
game.

Wedefine the following set of possible actions for each
high-level group: N/A,Move,Attackand Idle:

• N/A: only forbuildingsastheycannotperformanyaction,

• Move: movetoanadjacent region,

• Attack: attack anyenemy inthecurrent region, and

• Idle: donothingduring400frames.

Figure1: Snapshot of aStarCraft game.
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Figure 2: Representation of a game state using different
high-level abstractionwith theID of eachregion.

Figure 1 shows aportion of a real gamestate of a Star-
Craft game. And in Figure 2 we graphically illustrate the
differenthigh-level abstractionsdefinedpreviouslyusingthe
game state fromFigure 1. The actual internal representa-
tionof thehigh-level gamestateissimply amatrixwithone
rowper unit type⇥ region, where in each rowwestorethe
number of units of that type, and the action they are cur-
rently executing. Table1 shows, for a few StarCraft maps,
thenumber of regions inwhicheachmapisdivided, theav-
erage connectivity of each region, and the diameter of the
resultinggraph.

High-Level Game-TreeSearch
To evaluate theproposed high-level gamestateabstraction,
wedecidedtousethegame-treesearchalgorithmMCTSCD
(blinded for peer review (XXX 2014)). MCTSCD isavari-
ant of Monte Carlo Tree Search algorithm that can handle
simultaneous moves and durative actions (features present
inall RTS games). To beable to performanyMCTS algo-
rithmweneed to define two components. The first one is
a state forwarding function that can roll thegame forward
using thehigh-level gamestaterepresentation, and thesec-
ondone is thestateevaluation function. Weused theones
definedbyMCTSCD authors, where:

• The state forwarding first try to predict in which game
frametheactionof eachgroupwill befinished. Todothis
we use the group velocity and the distance between re-
gionstopredictmovements. AndtheDamagePer Frame



Invited Talk 1

“State Evaluation and Opponent Modelling 
in Real-Time Strategy Games” 

                                          [Graham Erickson]
– Build order clustering from replays for game 

balancing and finding best response strategies

– Global RTS game state evaluation trained on 
replays

– Micro-skill estimation by comparing player with 
base-line player





Invited Talk 2

“GHOST: A Stealth Solver”  [Florian Richoux]
– Free Software C++ Constraint Satisfaction Solver 

Architecture
– Anytime, local search SAT solver + optimizer  
– FAST!
– Applied to RTS Sub-Tasks:

● Target Selection
● Wall Building
● Build order optimization

– Promising results!





Workgroup 1: Benchmark Problems

Problems 
● Solutions still mainly scripted
● Only playing full-game tournaments may          
 hinder progress on sub-problems

Solution: Sub-game competitions
=> Simpler, fosters modularity and generality

Idea: Sub-games relevant to full-game 
=> Modules can be used in full-game bots



Sub-Game Candidates
● Small combat situations:  n vs. m units

[ regular / randomized unit stats ]
● Multiagent pathfinding: 100 zerglings vs. 4 bunkers?
● Base attack / defense
● Place buildings and survive attack waves
● Create / prevent expansion
● Faction unit/structure/techtree subsets

Will be considered for next year's competition



Workgroup 2: RTS AI History 
Before StarCraft

● RL
● Influence maps
● Single-agent planning (e.g. HTN)
● Learning from demonstration
● Adversarial search and simulation

(e.g. RandomAlphaBeta, MCPlan, RTSplan) 



Workgroup 2: RTS AI History
Since StarCraft

● Divide and conquer, modularizing AI
● Learning from replay data
● Build order recognition / optimization
● Tactical adversarial real-time search

(ABCD, Portfolio Greedy Search,

Combinatorial UCT, ...)
● High-level strategy selection with UCB
● High-level strategies still SCRIPTED



Workgroup 2: 
What should we be working on next? 

StarCraft
   Sub-games?  Generalizations?

Reactivity/Planning
  1. Plan recognition + best response
  2. Holistic approach: scale up game-tree search
  (Two ideas presented in 10:15a session tomorrow)

Learning
  - Opponent modeling (in-game, from replays)
  - Game mechanics from interacting with game 
    => Simulators 



Questions?
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