
Second Workshop (W1) on
AI in Adversarial Real-Time Games

Co-organizers: M. Buro and S. Ontañón

4 submissions, 3 accepted, 2 invited talks

8 PC Members

14 Attendees

https://www.cs.ualberta.ca/~mburo/aiide14ws

StarCraft

Activities

● Paper Session [1:30h]
● Invited Talks [1:40h]
● StarCraft Competition Report + Replays [1:10h]

[Dave Churchill]

● Group Discussion [0:45h]
● Workgroups + Reporting [1:30h]
● Dinner

Paper and Invited Talk
Summaries

Building Placement Optimization in
Real-Time Strategy Games

• Authors
– Nicolas Barriga, Marius Stanesu, Michael Buro

• Premise
– Building placement is key in RTS games, but

current bots don't do a good job
• Approach

– Genetic Algorithm explores space of building
placements

– Game simulator (SparCraft) predicts the outcome
of battles for given building configurations

Building Placement Optimization in
Real-Time Strategy Games

• Results
– Between 35 to 68%

of losses turned
into wins

– Comparable to
human building
placement
performance (from
replays)

Sequential Pattern Mining in StarCraft:Brood
War for Short and Long-Term Goals

• Authors
– Michael Leece, Arnav Jhala

• Premise
– Most AI solutions for RTS games require a significant

amount of hand-crafting. Can we learn those from experts
automatically?

• Solution
– Generalized Sequential Patterns (GSP)
– General algorithm for mining frequent patterns from

sequences
– 500 professional-level StarCraft replays

Sequential Pattern Mining in StarCraft:Brood
War for Short and Long-Term Goals

• Results
– Many interesting

patterns detected:
build orders, action
spamming, army
movement

• Next step
– Learn patterns to be

used as methods in
HTN planning (into a
bot)

High-Level Representations for Game-Tree
Search in RTS Games

• Authors
– Alberto Uriarte, Santiago Ontañón

• Premise
– RTS games are too complex for game tree search
– Can we abstract the game and use game tree search at this

abstract level? Will search results still be meaningful?
• Approach

– Proposed four different abstractions of the game state and used
them to test game tree search (MCTSCD) in full-game scenarios.

– Built a simulator that rolls the world forward using the
abstractions

High-Level Representations for Game-Tree
Search in RTS Games

• Results
– Type of abstraction

influences simulator
accuracy

– Impacts gameplay
performance

– Better than built-in AI
– Worse than existing

scripted approaches
(from StarCraft
competition)

andexperimentswithUCT consideringdurationsandaPort-
folioGreedy Search; showinggoodresults in larger combat
scenarios thanbefore. Ontañón(Ontañón2013) presenteda
MCTS algorithm called NäıveMCTS specifically designed
for RTS games, and showed it could handle full-game, but
small scaleRTSgamescenarios. Somework hasbeendone
also usingGenetic Algorithms andHighClimbingmethods
(Liu, Louis, andNicolescu 2013) or Reinforcement Learn-
ing(JaideeandMuñoz-Avila2012).

High-level Abstraction inRTSGames
Thekey idea of thedifferent state abstractions explored in
thispaper istofirstsimplify thegamemapbydividingit ina
setof regions. Specifically, asinourpreviouswork (blinded
for peer review (XXX 2014)), we used Perkins algorithm
(Perkins 2010), implemented in theBWTA library, for this
purpose. Since themap is invariant through all the game
we only need to compute this once. With this region de-
composition now thecombat units (and themainbases) are
groupedbyunit typeandregion. For eachgroupwecapture
the following information: Player (which player controls
this group), Type (type of units in this group), Size (num-
ber of units forming this group.), Region (which region is
this group in), Order (which order is this group currently
performing), Target (theID of thetarget region) andEnd (In
whichgameframeis theorder estimated tofinish).

Basedonthisidea,weproposefourdifferentabstractions:

• A-RC: This is our baselineabstraction, and corresponds
to the one used in our previous work (blinded for peer
review (XXX 2014)). Similar to theabstraction proposed
bySynnaeve(SynnaeveandBessière2012), inadditionto
the regions returned by Perkins’ algorithm. Weadd one
additional region for each chokepoint in the map (with
center at thecenter of thechokepoint, andacircular area
of the samediameter as the chokepoint). Weonly con-
sider military units in this abstraction, although for the
specific case of StarCraft, we also add the main bases
(TerranCommandCenters, etc.), since it is necessary for
theAI toknowwheretosendunits toattack.

• A-RCB: SameasA-RC, butwealsoaddall thebuildings
inthegame.

• A-R: Like A-RC, but without having additional regions
for chokepoints. Inthiswaywehaveasimpler high-level
map representation. Toevaluatetheimpact of thesesim-
plificationwecomputedthenumberof nodes, theaverage
connectivity and thediameter of thegenerated graph are
showninTable1.

• A-RB: LikeA-R, but also adding all thebuildings in the
game.

Wedefine the following set of possible actions for each
high-level group: N/A,Move,Attackand Idle:

• N/A: only forbuildingsastheycannotperformanyaction,

• Move: movetoanadjacent region,

• Attack: attack anyenemy inthecurrent region, and

• Idle: donothingduring400frames.

Figure1: Snapshot of aStarCraft game.

1

2

3

A-RC

A-R A-RB

A-RCB

1

2

3

1

3

1

3

Figure 2: Representation of a game state using different
high-level abstractionwith theID of eachregion.

Figure 1 shows aportion of a real gamestate of a Star-
Craft game. And in Figure 2 we graphically illustrate the
differenthigh-level abstractionsdefinedpreviouslyusingthe
game state fromFigure 1. The actual internal representa-
tionof thehigh-level gamestateissimply amatrixwithone
rowper unit type⇥ region, where in each rowwestorethe
number of units of that type, and the action they are cur-
rently executing. Table1 shows, for a few StarCraft maps,
thenumber of regions inwhicheachmapisdivided, theav-
erage connectivity of each region, and the diameter of the
resultinggraph.

High-Level Game-TreeSearch
To evaluate theproposed high-level gamestateabstraction,
wedecidedtousethegame-treesearchalgorithmMCTSCD
(blinded for peer review (XXX 2014)). MCTSCD isavari-
ant of Monte Carlo Tree Search algorithm that can handle
simultaneous moves and durative actions (features present
inall RTS games). To beable to performanyMCTS algo-
rithmweneed to define two components. The first one is
a state forwarding function that can roll thegame forward
using thehigh-level gamestaterepresentation, and thesec-
ondone is thestateevaluation function. Weused theones
definedbyMCTSCD authors, where:

• The state forwarding first try to predict in which game
frametheactionof eachgroupwill befinished. Todothis
we use the group velocity and the distance between re-
gionstopredictmovements. AndtheDamagePer Frame

Invited Talk 1

“State Evaluation and Opponent Modelling
in Real-Time Strategy Games”

 [Graham Erickson]
– Build order clustering from replays for game

balancing and finding best response strategies

– Global RTS game state evaluation trained on
replays

– Micro-skill estimation by comparing player with
base-line player

Invited Talk 2

“GHOST: A Stealth Solver” [Florian Richoux]
– Free Software C++ Constraint Satisfaction Solver

Architecture
– Anytime, local search SAT solver + optimizer
– FAST!
– Applied to RTS Sub-Tasks:

● Target Selection
● Wall Building
● Build order optimization

– Promising results!

Workgroup 1: Benchmark Problems

Problems
● Solutions still mainly scripted
● Only playing full-game tournaments may
 hinder progress on sub-problems

Solution: Sub-game competitions
=> Simpler, fosters modularity and generality

Idea: Sub-games relevant to full-game
=> Modules can be used in full-game bots

Sub-Game Candidates
● Small combat situations: n vs. m units

[regular / randomized unit stats]
● Multiagent pathfinding: 100 zerglings vs. 4 bunkers?
● Base attack / defense
● Place buildings and survive attack waves
● Create / prevent expansion
● Faction unit/structure/techtree subsets

Will be considered for next year's competition

Workgroup 2: RTS AI History
Before StarCraft

● RL
● Influence maps
● Single-agent planning (e.g. HTN)
● Learning from demonstration
● Adversarial search and simulation

(e.g. RandomAlphaBeta, MCPlan, RTSplan)

Workgroup 2: RTS AI History
Since StarCraft

● Divide and conquer, modularizing AI
● Learning from replay data
● Build order recognition / optimization
● Tactical adversarial real-time search

(ABCD, Portfolio Greedy Search,

Combinatorial UCT, ...)
● High-level strategy selection with UCB
● High-level strategies still SCRIPTED

Workgroup 2:
What should we be working on next?

StarCraft
 Sub-games? Generalizations?

Reactivity/Planning
 1. Plan recognition + best response
 2. Holistic approach: scale up game-tree search
 (Two ideas presented in 10:15a session tomorrow)

Learning
 - Opponent modeling (in-game, from replays)
 - Game mechanics from interacting with game
 => Simulators

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Building Placement Optimization in Real-Time Strategy Games
	Slide 7
	Slide 8
	High-Level Representations for Game-Tree Search in RTS Games
	High-Level Representations for Game-Tree Search in RTS Games
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

