Second Workshop (W1) on
Al In Adversarial Real-Time Games

https://www.cs.ualberta.ca/~mburo/aiidel14ws

Co-organizers: M. Buro and S. Ontanon
4 submissions, 3 accepted, 2 invited talks
8 PC Members

14 Attendees

StarCraft

Fux 100 e

Activities

Paper Session
Invited Talks

StarCraft Competition Report + Replays
| Dave Churchill]
Group Discussion

Workgroups + Reporting
Dinner

1:30N]
1:40N]
1:10N]

[0:45h]
[1:30N]

Paper and Invited Talk
Summaries

Building Placement Optimization in
Real-Time Strategy Games

e Authors
— Nicolas Barriga, Marius Stanesu, Michael Buro

e Premise

— Building placement is key in RTS games, but
current bots don't do a good job

o Approach

— Genetic Algorithm explores space of building
placements

— Game simulator (SparCraft) predicts the outcome
of battles for given building configurations

Building Placement Optimization in
Real-Time Strategy Games

e Results

— Between 35 to 68%
of losses turned
into wins

— Comparable to
human building
placement
performance (from
replays)

Sequential Pattern Mining in StarCraft:Brood
War for Short and Long-Term Goals

* Authors
— Michael Leece, Arnav Jhala
* Premise

— Most Al solutions for RTS games require a significant
amount of hand-crafting. Can we learn those from experts
automatically?

* Solution
— Generalized Sequential Patterns (GSP)

— General algorithm for mining frequent patterns from
seguences

— 500 professional-level StarCraft replays

Sequential Pattern Mining in StarCraft:Brood
War for Short and Long-Term Goals

e Results Build Orders
. . 1. Build(SupplyDepot)

— Many interesting 2: Build(Barracks)
patterns detected: 3: Build(Refinery)

. . 4: Build(SupplyDepot)
build or.ders, action 5; Build(Factory)
spamming, army 6: AddOn(MachineShop)
movement

1: Build(Pylon)
* Next step 2: Build(Gateway)

_ 3: Build(Assimilator)
Learn patterns to .be 4: Build(CyberneticsCore)
used as methods in 5: Build(Pylon)

HTN planning (into a 6: Upgrade(DragoonRange)
7: Build(Pylon)

bot)

High-Level Representations for Game-Tree
Search in RTS Games

* Authors
— Alberto Uriarte, Santiago Ontanon
* Premise
— RTS games are too complex for game tree search

— Can we abstract the game and use game tree search at this
abstract level? Will search results still be meaningful?

* Approach

— Proposed four different abstractions of the game state and used
them to test game tree search (MCTSCD) in full-game scenarios.

— Built a simulator that rolls the world forward using the
abstractions

High-Level Representations for Game-Tree
Search in RTS Games

* Results

— Type of abstraction
influences simulator
accuracy

— Impacts gameplay
performance

— Better than built-in Al E 2 o DDDDD 2 ™
— Worse than existing P :
scripted approaches | |

(from StarCraft
competition)

Invited Talk 1

“State Evaluation and Opponent Modelling
In Real-Time Strategy Games”

[Graham Erickson]

- Build order clustering from replays for game
balancing and finding best response strategies

- Global RTS game state evaluation trained on
replays

- Micro-skill estimation by comparing player with
base-line player

Training and Testing on [k,]
80

75

-
)

== Map Control

)
S~
= conamic
O 65 —»— Military
4] _
li Macro Skill
E Micra Skill
<L il 4l Features

60

A5

9
&0
'0-5 B0 1015 "5

Time [nterval (minutes)

Invited Talk 2

“GHOST: A Stealth Solver” [Florian Richoux]

- Free Software C++ Constraint Satisfaction Solver
Architecture

- Anytime, local search SAT solver + optimizer
- FAST!
- Applied to RTS Sub-Tasks:

e Target Selection

« Wall Building

* Build order optimization
- Promising results!

Architecture of GHOST

y mMs

| T

I | Variables

| EI SAT Domain

I ”‘I Constraints
I — heuristics

|

I

SAT post-process

|
|
I OPT]I oObjectives

OPTI post-process

I
GolutioD

Source code

https://github.com/
richoux/GHOST

Workgroup 1. Benchmark Problems

Problems

 Solutions still mainly scripted

* Only playing full-game tournaments may
hinder progress on sub-problems

Solution: Sub-game competitions
=> Simpler, fosters modularity and generality

Idea: Sub-games relevant to full-game
=> Modules can be used in full-game bots

Sub-Game Candidates

 Small combat situations: n vs. m units
[reqular / randomized unit stats |
* Multiagent pathfinding: 100 zerglings vs. 4 bunkers?
» Base attack / defense
* Place buildings and survive attack waves
* Create / prevent expansion
* Faction unit/structure/techtree subsets

Will be considered for next year's competition

Workgroup 2: RTS Al History
Before StarCratft

RL

Influence maps

Single-agent planning (e.g. HTN)

Learning from demonstration

Adversarial search and simulation

(e.g. RandomAlphaBeta, MCPlan, RTSplan)

Workgroup 2: RTS Al History
Since StarCratft

» Divide and conquer, modularizing Al

* Learning from replay data

» Build order recognition / optimization

» Tactical adversarial real-time search
(ABCD, Portfolio Greedy Search,
Combinatorial UCT, ...)

* High-level strategy selection with UCB

* High-level strategies still SCRIPTED

Workgroup 2.
What should we be working on next?

StarCraft
Sub-games? Generalizations?

Reactivity/Planning
1. Plan recognition + best response
2. Holistic approach: scale up game-tree search
(Two ideas presented in 10:15a session tomorrow)

Learning

- Opponent modeling (in-game, from replays)
- Game mechanics from interacting with game
=> Simulators

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Building Placement Optimization in Real-Time Strategy Games
	Slide 7
	Slide 8
	High-Level Representations for Game-Tree Search in RTS Games
	High-Level Representations for Game-Tree Search in RTS Games
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

