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Game AI

Enabling computers to play games
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AI for Video Games

Why work on video games?

Tools for balancing

More interesting opponents

Dynamic game elements
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Real-Time Strategy

Combat simulation games

Manage resources, build
units, engage in battles

Simultaneous moves

Real-time

Imperfect information
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StarCraft

Blizzard Entertainment

1998

Commercial and critical
success

Three factions

Protoss
Terran
Zerg

Known to be well-balanced
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StarCraft AI

Why StarCraft?

Large online community

Professional players

Replays from various ladders freely available

BWAPI (Brood War API)

C++
Can test against programs and humans
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StarCraft AI Tournaments

AI against AI

Nowhere near human skill

AIIDE

CIG

SSCAI

UAlbertaBot won in 2013
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Terminology

Macro

Managing resources
Build-orders
High-level plans

Micro

Controlling units in battles
Path finding
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Strategy

Reactive ControlTacticalStrategic

3 mins + 30 sec - 1 min  ~ 1 sec

Army
Composition

Opponent
Modeling

Unit
Micro

Multi-Agent
Pathfinding

Combat Timing
& Position

Unit & Building
Placement

Strategic
Stance

Build-Order
Planning

Knowledge
& Learning

Scouting

High Level, Abstract Mid-Level Low-Level, Concrete

[1]

Graham Erickson MSc Seminar



Introduction
Build-Order Clustering

State Evaluation

Why study RTS?

Well-defined environments

Can be broken into sub-tasks

Areas in AI [2]

Adversarial planning under uncertainty
Learning and opponent modeling
Spatial and temporal reasoning

Abstraction is necessary
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Complexity of shooting game

PSPACE-hard [3]
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What is a Build-Order?

Sequence

Embody high-level strategy

String of characters
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Why Cluster Build-Orders?

Hard coded rules

Expert knowledge

Game balancing is an extensive process

Starcraft was patched continuously for 11 years
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Why Cluster Build-Orders?

novel strategies

avoid expert knowledge

empirical basis for responses
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Jeff Long’s Master’s Thesis

100 WarCraft III replays [4]

Hand-labeled build-orders

Classification problem

Sequence alignment

Populate payoff matrices
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Sequence Alignment

abba

ba
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Sequence Alignment

abba

b a
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Sequence Alignment

n∑
i=0

S(Ai ,Bi )
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Needleman-Wunsch Sequence Alignment

Dynamic greedy algorithm

O(nm)

Score and alignment
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Edit or Levenshtein Distance

S(a, b) =

{
0 if a = b
−1 if a 6= b
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Sequence Alignment for StarCraft

Unit Similarity

We introduce supply

Strongly reward matches

Additional penalties for
mis-matches
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Mis-Match Penalty I

Military

Flying

ArbiterCorsairScoutCarrier

Ground

Recon

Observer

Drop

Shuttle
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Mis-Match Penalty II

Ground

Spellcaster

High TemplarArchon

Melee

Zealot

Ranged

ReaverDragoon
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Clustering

Now that we have a similarity metric we can cluster
build-orders

We want a technique that works using just a similarity matrix
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Hierarchical Clustering

abcd

a

a

a

bcd

b

b

cd

c d
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Agglomerative Hierarchical Clustering

Input: Similarity matrix S
Compute proximity matrix P from S
while |P| > 1 do

Merge clusters i and j where Pij is maximized
Update P

end while
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Proximity Measures

Graham Erickson MSc Seminar



Introduction
Build-Order Clustering

State Evaluation

Proximity Measures

Max(C1,C2) = max({Sij |i ∈ C1, j ∈ C2})

Min(C1,C2) = min({Sij |i ∈ C1, j ∈ C2})

Average(C1,C2) =

∑
i∈C1

∑
j∈C2

Sij

|C1| ∗ |C2|
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Choosing a Proximity Measure

CoPhenetic Correlation Coefficient
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Data

Data collected by Gabriel Synnaeve [5]

Protoss versus Protoss (∼400 games)

Protoss versus Terran (∼2000 games)

Replays are taken from major amateur ladders

Replays are already parsed
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CPCC values for PvT

Linkage Policy Protoss CPCC Terran CPCC

Min 0.68256 0.77136
Max 0.18612 0.16551

Average 0.83518 0.85562
Ward 0.61552 0.54474
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Cohesion and Separation
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Choosing Partitional Clustering PvT Protoss
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Protoss Clusters

Cluster 1 (rush)

Short
Zealots and Dragoons
Probably rushes

Cluster 2 (drop)

Small
Reaver drops

Cluster 3 (drag)

Mid-length
Dragoons

Cluster 4 (big)

Very large
Tough to see high-level
coherence

rush tanks drop big
rush 0.07 (15) -0.09 (33) 0 (0) -1.0 (1)
drop 0 (0) 1.0 (2) -1.0 (1) 0.33 (3)
drag 0.5 (4) 0.30 (158) 0.11 (9) -0.03 (203)
big 0 (0) 1.0 (4) 1.0 (1) 0.17 (1655)
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Terran Clusters

Cluster 1 (rush)

Short
Marines

Cluster 2 (tanks)

Mid-length
Marines → Vultures and
Tanks or just Tanks

Cluster 3 (drop)

Varying lengths
Goliaths and Dropships

Cluster 4 (big)

Very large
Tough to see high-level
coherence

rush tanks drop big
rush 0.07 (15) -0.09 (33) 0 (0) -1.0 (1)
drop 0 (0) 1.0 (2) -1.0 (1) 0.33 (3)
drag 0.5 (4) 0.30 (158) 0.11 (9) -0.03 (203)
big 0 (0) 1.0 (4) 1.0 (1) 0.17 (1655)
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Conclusion

Build-orders are just sequences of characters

Sequence alignment for developing similarity metrics

Agglomerative hierarchical clustering

Clusters show some cognitive coherence

Future work

Different clustering techniques
Experimenting with custom cost functions
Using payoff matrices to influence in-game decision making
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Problem

Given a state, predict the
winner

Perfect information

Identify important features

Estimate player skill
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Motivation

Search algorithms that require evaluation have had success in
other games

Part of a research initiative into hierarchical search systems [6]

Used for pruning and rule-based decision making
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Objectives

Present a feature set

Micro skill estimation metric

Show effectiveness of technique across time-steps
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Data

Synnaeve data-set

Protoss versus Protoss

Parser developed

Some errors with destruction events
Control over battle detection
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SCFeatureExtractor

https://github.com/gkericks/SCFeatureExtractor

C++

BWAPI

Computes feature vectors and writes them to file periodically
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Battles

Isolated skirmishes

Micro game
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Battle Extraction

Identify battles

Log unit info when the battle starts

Time
Health
Location

Let units enter at different times

Battles time out or end by rout
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Battle Example I
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Battle Example II

Graham Erickson MSc Seminar



Introduction
Build-Order Clustering

State Evaluation

Battle Example III

Graham Erickson MSc Seminar



Introduction
Build-Order Clustering

State Evaluation

Battle Example IV
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Battle Example V
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Battle Example VI
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Battle Example VII
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Battle Example VIII
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Battle Example IX
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Battle Example X
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Battle Example XI
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Battle Example XII
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Battle Example XIII
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Features

Feature vectors are extracted every 10 seconds

Feature values are in terms of differences

Player A has DA Dragoons
Player B has DB Dragoons
Feature is DA − DB

Two feature vectors are added for each state

Symmetric match-up
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Economic Features

Average unspent resources

Income
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Military Features

Unit and building counts

Units that are ammo not included

Research/Upgrades not included
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Map Coverage Feature
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Micro Skill Estimation

Combat game

Specific type of skill

Skill estimate can be used as a feature
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Baseline

Work done in Poker [7]

Play out same situation using a baseline player

Compare agent and baseline outcome
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SparCraft

https://code.google.com/p/sparcraft/
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Scripted Player

No-OverKill Attack-Value (NOK-AV)

Targets highest damage-per-frame to hit-point ratio

Buildings are just obstacles
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Battle Skill Metric
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Macro Skill

High-level decision making

Number of frames that supply is maxed out for

Number of idle production facilities (PF )

Number of units queued (Q)
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Learning

Logistic Regression

Learn feature weights
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Breakdown of Time Intervals

Time (min) Games Examples

0-5 391 23418
5-10 386 22616

10-15 364 19836
15-20 289 14996

20- 211 31060
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Feature Set Evaluation
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With Larger Training Sets
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Problems with Micro Skill Estimator

Low number of repeat players in data-set

Late game units

No external ranking
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2013 AIIDE StarCraft AI Tournament

8 AI systems

10 maps

Each bot plays each other bot 20 times on each map

Ranked by win percentage
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Ranking from AIIDE 2013 StarCraft Competition

UAlbertaBot 82.43%

Skynet 72.77%

Aiur 60.29%

Ximp 55.29%

Xelnaga 49.96%

ICEStarCraft 47.82%

Nova 27.47%

BTHAI 3.93%
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Ranking using Micro Skill Averaged

Nova 7.65

UAlbertaBot 3.30

Aiur 1.01

ICEStarCraft -0.026

Ximp -1.91

BTHAI -3.03

Skynet -4.61

Xelnaga -5.60

Graham Erickson MSc Seminar



Introduction
Build-Order Clustering

State Evaluation

Ranking using Micro Skill with Variance Control

Nova 7.59

UAlbertaBot 1.97

Aiur 0.85

ICEStarCraft 0.01

Ximp -1.79

Xelnaga -2.99

BTHAI -3.13

Skynet -4.51
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Conclusion

Predict game outcome

Noisy problem

Feature set has > 70% accuracy in the later stages of a match

Average unspent resources

Income

Map control

Skill estimation through simulation
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How hard is RTS?

Huge state space

Average map size is 128*128 tiles
Approx. 50 unit types
Approx. 200 units
101685 possible unit locations
Ignoring Health, Attacks, Resources etc.
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Sequence Alignment

Needleman-Wunsch sequence alignment algorithm [8]

Sequences A and B can have gaps inserted to make aligned
sequences A′ and B ′

Take S(a, b) to be the similarity between two characters a and
b

Take S(−, a) to be the gap penalty for some character a

Maximize alignment score:
n∑

i=0

S(A′i ,B
′
i )
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Example

abba

ba

S(a, b) =

{
0 if a = b
−1 if a 6= b

abba

b a

S(a, b) is the Levenshtein or edit distance [9]
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Needleman-Wunsch Sequence Alignment

Dynamic program

Populates a matrix M

Mij is the score of an optimal alignment between the first i
characters in A and the first j characters in B
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Needleman-Wunsch Initialize M

T = 0
for i ∈ [1...n] do

Mi0 = T + S(−,Ai )
T = Mi0

end for
T = 0
for j ∈ [1...m] do

M0j = T + S(−,Bj )
T = M0j

end for
M00 = 0
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Needleman-Wunsch Dynamic Program

for i ∈ [1...n] do
for j ∈ [1...m] do

match = Mi−1,j−1 + S(Ai ,Bj )
gapA = Mi−1,j + S(−,Ai )
gapB = Mi ,j−1 + S(−,Bj )
Mi ,j = max(match, gapA, gapB)

end for
end for
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Similarity Metric

Goal is to cluster sequences

In [10] sequence alignment is used to define sequence similarity

dis(A,B) = M0,0

S ′(a, b) =

{
S(a, b) if a = b
0 if a 6= b

discorrect(A,B) =
n∑

i=0

S ′(Ai ,Bi )

Simalign(A,B) = dis(A,B)/discorrect(A,B)
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Similarity Metric

cor(a, b) =

{
1 if a = b
0 if a 6= b

Num Correct(A,B) =
n∑

i=0

cor(Ai ,Bi )

SimSignificance(A,B) = Num Correct(A,B)/n

Sim(A,B) = Simalign(A,B) ∗ SimSignificance(A,B)
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General Cost Function

ρ(a, b) =

{
k ∗ c(a) if a == b
|c(a)− c(b)| − φ(a, b) otherwise

c is some attribute of a unit type

k is a constant

φ is a mis-match penalty.
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Unit Similarity

Recall that Needleman-Wunsch uses a character similarity
function S(a, b)

Also called a cost function

More interesting to design a domain specific cost function

Let ρ be a custom cost function of character a and b
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General Cost Function

ρ(a, b) =

{
k ∗ c(a) if a == b
|c(a)− c(b)| − φ(a, b) otherwise

c is some attribute of a unit type

k is a constant

φ is a mis-match penalty.
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Cost Function for StarCraft

For c we introduce supply

Supply is for limiting unit
counts

Jeff Long used k = 16

Strongly reward matches
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Mis-Match Penalty

Defining φ(a, b)

Larger when a and b are more different

We propose a unit Ontology

Hierarchical Categorization
Penalties are assigned depending on at what level the units
differ
More essential differences have higher penalties
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Protoss Ontology I

Military

Flying

ArbiterCorsairScoutCarrier

Ground

Recon

Observer

Drop

Shuttle
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Protoss Ontology II

Ground

Spellcaster

High TemplarArchon

Melee

Zealot

Ranged

ReaverDragoon
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Cluster Evaluation

What clusterings should we choose?
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Choosing a Cluster Proximity Measure

Recall: Agglomerative Hierarchical clustering requires a
proximity measure

How to choose the best one for the data?
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CoPhenetic Correlation Coefficient

Similarity matrix S and proximity matrix P

During clustering there will be a iteration where two elements
x and y are first members of the same cluster

The proximity of the two clusters at that iteration is the
CoPhenetic distance for x and y

Populate a matrix P ′ of CoPhenetic distances

CPCC is correlation between P ′ and S
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CPCC values for PvP data

Linkage Policy CPCC

Min 0.62337
Max 0.21094

Average 0.76905
Ward 0.56441
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CPCC values for PvT

Linkage Policy Protoss CPCC Terran CPCC

Min 0.68256 0.77136
Max 0.18612 0.16551

Average 0.83518 0.85562
Ward 0.61552 0.54474
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Choosing a Partitional Clustering

Have a metric for a partitional clustering [11]

Chose the clustering that optimizes the metric
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Cohesion

Cohesion(C ) =
∑
i∈C

∑
j∈C

Si ,j
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Separation

Sep(C ,C ′) =
∑
i∈C

∑
j∈C ′

Si ,j

Separation(C ) =
∑
C ′∈κ
C ′ 6=C

Sep(C ,C ′)

Graham Erickson MSc Seminar



Combining Cohesion and Separation

Sep and Co(κ) =
∑
C∈κ

Separation(C )

Cohesion(C )
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Choosing Partitional Clustering PvP I

Sep and Co versus the number of clusters for the hierarchical
clustering of the PvP dataset
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Choosing Partitional Clustering PvP II

Sep and Co versus the number of clusters for the hierarchical
clustering of the PvP dataset normalized by number of clusters
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Choosing Partitional Clustering PvP III

Sep and Co versus the number of clusters for the hierarchical
clustering of the PvP dataset normalized by number of clusters on
the domain of [2,100]
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Choosing Partitional Clustering PvT Protoss

Sep and Co versus the number of clusters for the hierarchical
clustering of the PvT dataset normalized by number of clusters on
the domain of [2,100] just using Protoss players
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Choosing Partitional Clustering PvT Terran

Sep and Co versus the number of clusters for the hierarchical
clustering of the PvT dataset normalized by number of clusters on
the domain of [2,100] just using Terran players
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Building Payoff Matrices I

Quantify how build-orders in each cluster preform against
each other

Game balance

Strategy response

Populated via replay data
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Building Payoff Matrices II

Gij =
wij − lij

tij

i is the row player

j is the column player

wij is the number of wins for cluster i against cluster j

lij is the number of losses for cluster i

tij = wij + lij
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Payoff Matrix from PvP Data

1 2 3
1 0 (0) -1.0 (1) 0 (0)
2 1.0 (1) 0.0 (640) 0.2 (25)
3 0 (0) -0.2 (25) 0 (60)
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Problems

Diagonal is uninteresting

PvP is a symmetric match-up

Diagonal has most of the examples

Cluster 1 is very small
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Payoff Matrix from PvT I

1 2 3 4
1 0 (2) 0 (0) 1.0 (2) 0 (0)
2 1.0 (1) -1.0 (1) 0 (0) 0 (0)
3 -1.0 (1) 0 (0) -0.09 (33) 0.07 (15)
4 0.15 (1858) 0.2 (10) 0.32 (60) 0.5 (4)

There are still small clusters!

These might not represent a coherent strategy
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Payoff Matrix from PvT I

1 2 3 4
1 0 (2) 0 (0) 1.0 (2) 0 (0)
2 1.0 (1) -1.0 (1) 0 (0) 0 (0)
3 -1.0 (1) 0 (0) -0.09 (33) 0.07 (15)
4 0.15 (1858) 0.2 (10) 0.32 (60) 0.5 (4)

There are still small clusters!

These might not represent a coherent strategy
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Removing Small Clusters

Let C be the topmost cluster of the hierarchical clustering

Let T be a threshold size

Let P be kept clusters

Split C into two clusters

Larger cluster is added to P

If smaller cluster is ≥ T it is added to P, discarded otherwise
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Synnaeve’s Extraction Algorithm

Similar

No buildings

Starts with unit destruction events

Ours start with attacks

Only start and end timestamps

Ours has timestamps for when units enter the battle
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Preprocessing

Some replays contained strange activity

Giving up when clearly ahead
AFK

Winner not always clearly marked
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Determining the Winner

Flags

isWinner
playerLeft (with time-stamp)

If isWinner is present, use that

Otherwise playerLeft and game score are used
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Determining the Winner

If no playerLeft flag

game score is used, if scores are close (∆ < T ) replay is
discarded

If one playerLeft flag

Opposite player is winner
Unless that conflicts with game score (type A)

Two playerLeft flags

Player who left second is chosen
Unless that conflicts with game score (type B)
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Breakdown of Discarded Replays

Games Number of Games

Original 447
Kept 391

No Status Close Score 30
Conflict Type A 24
Conflict Type B 1

Corrupt 1
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Economic Features

Let Rcur be current unspent resources

Let Rtot be current unspent resources

Let T be current frame number

Average unspent resources:

U = (
∑
t≤T

Rcur )/T

Income:

I =
Rtot

T
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Map Coverage Feature

Map divided into grid (2-by-2 build tiles)

Ratio of occupied to total tiles

Units to walkable space

MC (p) =
∑

pos∈P

f (pos, p)

f (pos, p) =

{
1 if pos is occupied by p
0 otherwise
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Battle Outcome

Life-time damage:

LTD2start(U) =
∑
u∈U

√
HP(u) · DMG(u)

U is the set of units for a player

Favours having multiple units to single units given equal
summed health

Rewards keeping units alive that can deal greater damage
quicker.
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Battle Outcome

Units can enter battles at varying times

Let T be the length of the battle

Let st(u) be the time unit u entered the battle

LTD2end (U) =
∑
u∈U

T − st(u)

T
·
√

HP(u) · DMG(u)
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Battle Value

Ps and Os are unit sets for player and opponent at the start of
the battle

Pout and Oout are unit sets for player and opponent at the end
of the battle

V P = (LTD2end (Pout)−LTD2end (Oout))−(LTD2start(Ps)−LTD2start(Os))

Pβ and Oβ are the unit sets from the baseline player

V β = (LTD2end (Pβ)−LTD2end (Oβ))−(LTD2start(Ps)−LTD2start(Os))
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Battle Skill Metric

βtot =
n∑

i=1

(V P
i − V β

i )

βavg =
βtot

n
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Battle Skill Metric

βvar =
1

n

n∑
i=1

(V P
i −

Ĉov[V P
i ,V

β
i ]

V̂ar[V P
i ]

· V β
i )
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Macro Skill

High-level decision making

Number of frames that supply is maxed out for

SF =
∑
t≤T

f (t)

f (t) =

{
1 if Scur = Smax at time t
0 otherwise

Number of idle production facilities (PF )

Number of units queued (Q)
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Learning

Logistic Regression

Matrix X with n examples (rows) and k features (columns)

Corresponding response vector Y

Gives k weights K such that

X · K = Y ′

T (g(Y ′)) ≈ Y

g(s) =
1

1 + e−s

T is a threshold function
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Evaluation

10-fold cross validation by games

Reporting accuracy

Proportion of correct predictions
Responses threshold at 0.5

Average Log-Likelihood

L(y , r) = y · log(r) + (1− y) · log(1− r)
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Feature Set Evaluation

Features 0-5 5-10

Rcur ,I ,U 54.42 (-0.686) 57.76 (-0.672)
UC 51.96 (-0.712) 57.84 (-0.682)
MC 51.27 (-0.693) 55.20 (-0.685)
βvar 50.23 (-0.693) 53.25 (-0.690)

SF , PF , Q 51.26 (-0.695) 49.96 (-0.695)
A 53.91 (-0.708) 58.81 (-0.680)
B 54.05 (-0.708) 58.66 (-0.681)
C 53.81 (-0.710) 58.72 (-0.681)

A = economic/military features Rcur , I ,U,UC

B = A + map control feature MC

C = B + skill features βvar , SF ,PF ,Q
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Feature Set Evaluation

Features 10-15 15-

Rcur ,I ,U 62.98 (-0.647) 64.17 (-0.625)
UC 66.67 (-0.705) 66.46 (-0.644)
MC 61.45 (-0.657) 71.39 (-0.561)
βvar 55.09 (-0.690) 52.82 (-0.690)

SF , PF , Q 51.75 (-0.694) 54.97 (-0.709)
A 66.36 (-0.712) 69.22 (-0.613)
B 66.44 (-0.712) 69.87 (-0.608)
C 66.41 (-0.708) 72.59 (-0.587)

A = economic/military features Rcur , I ,U,UC

B = A + map control feature MC

C = B + skill features βvar , SF ,PF ,Q
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With Larger Training Sets

Feature Set 0-5 5-10

Rcur ,I ,U 53.75 (-0.6875) 58.85 (-0.6708)
UC 52.03 (-0.6936) 58.43 (-0.6735)
MC 51.27 (-0.6943) 55.20 (-0.6872)
βvar 50.23 (-0.6931) 53.25 (-0.6896)

SF , PF , Q 52.02 (-0.6925) 50.74 (-0.6939)
A 53.19 (-0.6917) 58.74 (-0.6726)
B 52.60 (-0.6916) 58.56 (-0.6727)
C 52.73 (-0.6914) 58.70 (-0.6669)

If time interval is [k ,l ] training is done on examples in [k,∞)
and tested on examples in [k ,l ]
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With Larger Training Sets

Feature Set 10-15 15-20

Rcur ,I ,U 62.82 ( -0.6510) 60.23 (-0.6562)
UC 65.76 (-0.6329) 63.96 (-0.6516)
MC 61.45 (-0.6588) 64.02 (-0.6385)
βvar 55.24 (-0.6899) 56.14 (-0.6868)

SF , PF , Q 52.82 (-0.6916) 55.21 (-0.6857)
A 65.28 (-0.6367) 63.58 (-0.6612)
B 64.89 (-0.6377) 63.99 (-0.6617)
C 65.77 (-0.6267) 65.23 (-0.6510)

If time interval is [k ,l ] training is done on examples in [k,∞)
and tested on examples in [k ,l ]
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Payoff Matrix from PvT II

1 2 3 4
1 0.07 (15) -0.09 (33) 0 (0) -1.0 (1)
2 0 (0) 1.0 (2) -1.0 (1) 0.33 (3)
3 0.5 (4) 0.30 (158) 0.11 (9) -0.03 (203)
4 0 (0) 1.0 (4) 1.0 (1) 0.17 (1655)
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Protoss Clusters

Cluster 1

Short (in length) build-orders
Zealots and Dragoons
Probably rushes

Cluster 2

Small
Scouts, Shuttles, Reavers, and Carriers
Reaver drops

Cluster 3

Mid-length
Dragoons

Cluster 4

Very Large
Tough to see high-level coherence
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Terran Clusters

Cluster 1

Short
Mostly just Marines

Cluster 2

Mid-length
Start with Marines
Move to Vultures and Siege Tanks or just Siege Tanks

Cluster 3

Varying lengths
Goliaths and Dropships

Cluster 4

Long
Very large cluster
Tough to see high-level coherence
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