On statistical tests

- 1. Competing hypotheses H_0 and H_a , which are the logical complement of each other. We try to prove H_a by disproving H_0 .
- 2. The errors. Since sample data is used to make a decision about the entire population, errors can not be avoided with 100% certainty.

type I error – the error of rejecting H_0 even though H_0 is true

type II error – the error of failing to reject H_0 even though H_0 is false

		Truth	
		H_0 is true	H_0 is false
Test	reject H_0	type I error	OK
	do not reject H_0	OK	type II error

In a statistical test the probability for an error of type I is controlled ($\leq \alpha$), but the probability for an error of type II should be considered unknown. Therefore,

- when H_0 is rejected, one could make an error of type I, the probability is small, we can be pretty certain the decision is correct (not 100% though).
- when H_0 is not rejected, one could make an error of type II, the probability for this possible error is unknown, better do not commit to the decision (do not accept H_0).
- 3. The required components in a complete test
 - (1) Hypotheses and significance level, α . Choose H_0 and H_a as logical complements of each other. The significance level is the largest acceptable probability for an error of type I.
 - (2) Assumptions, stating and checking (if possible).
 - (3) Test statistic, obtain the data and find test statistic, including degrees of freedom.
 - (4) P-value. The P-value measures how likely we would see the sample data (or something more extreme) if H_0 would be true. Therefore a small P-value delivers a contradiction to the assumption that H_0 is true, then H_a as the logical complement must be true.
 - (5) Decision (reject H_0 /do not reject H_0).
 - (6) Context, now interpret what the decision means in the context of the problem.