
7 Variable Selection

In the presentation so far we always assumed to know which variables (predictors) have to be included
with a model, but in many application we face a data exploration problem, in which we try to
determine the ”best” model for the response variable choosing predictors from a given set.
We will have to define a ”best” model, and then investigate different strategies for finding the ”best”
model. The different model selection strategies though will not necessarily result in the ”best” model
as we sill see.
Before discussing the process of choosing a model the effect of model misspecification shall be pre-
sented.

7.1 Model misspecification effect

Assume the true (complete) model describing the population is

Y = β0 +
K∑
j=1

βjxj + ε

with K predictors. To estimate the model parameters the sample size n has to be at least K + 1,
because otherwise X ′X can not have full rank.
Therefore assume n ≥ K + 1, then the model for a sample of size n is written in matrix form as

~Y = X~β + ~ε

or as

Yi = β0 +
K∑
j=1

βjxij + εi, 1 ≤ i ≤ n

We will study the effect of omitting r variables from the model. The complete model has the K + 1
parameters and the incomplete model has p := K + 1− r parameters, when arranging the columns
and components of ~β properly the complete model can be written as

~Y = Xp
~βp +Xr

~βr + ~ε

where Xp is the design matrix including the the column for the intercept and the columns of X for
the variables included with the incomplete model and Xr includes the columns of X for the variables
not included with the incomplete model. X = [Xp | Xr].

Assume that ~β is partitioned according to the partitioning of X into Xp and Xr. ~β
′ = [~β′p | ~β′r].

Let β̂∗ be the least squares estimator for the true model and σ̂2
∗ the least squares estimator for σ2

from the true model.
Recall

β̂∗ = (X ′X)−1X ′~Y , σ̂2
∗ =

~Y ′(I −H)~Y

n−K − 1

The part of β̂∗ relating to Xp and Xr are denoted by β̂∗p and β̂∗r , respectively. Let Ŷ ∗ denote the
vector of fitted values.
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Now consider the incomplete model missing all predictors in Xr.

~Y = Xp
~βp + ~ε

β̂p is the least squares estimator for ~βp and σ̂2 the least squares estimator for σ2 from the incomplete
model. It is

β̂p = (X ′pXp)
−1X ′p~Y , σ̂2 =

~Y ′(I −Hp)~Y

n− (K + 1− r)
=
~Y ′(I −Xp(X

′
pXp)

−1X ′p)~Y

n− p

and the fitted values are denoted as Ŷ .

The mean square error of an estimator ψ̂ for a parameter vector ~ψ is defined as

MSE(ψ̂) = E[||ψ̂ − ~ψ||2] = trace(Cov(ψ̂)) + ||Bias(ψ̂)||2

Lemma 1.
It is

1. E(β̂p) = ~βp + (X ′pXp)
−1X ′pXr

~βr = ~βp + A~βr

2. Cov(β̂p) = σ2(X ′pXp)
−1 and Cov(β̂∗) = σ2(X ′X)−1.

3. Cov(β̂∗p)− Cov(β̂p) is positive semidefinite. (A is positive definite, if ~x′A~x ≥ 0 ∀ ~x).

4. MSE(β̂p) = σ2trace((X ′pXp)
−1) + ~β′rA

′A~βr

5. E(σ̂2) = σ2 +
~β′rX

′
r(I −Hp)X

′
r
~βr

n− p

6. For a prediction of the response, if the predictor vector is ~xp, we get Ŷ = ~xp
′β̂p, then E(Ŷ ) =

~x′p
~βp + x′pA

~βr and prediction Mean Square Error

MSE(Ŷ ) = σ2[1 + ~xp
′(X ′pXp)

−1~xp] + (~xp
′A~βr − ~xr ′~βr)2.

Conclusions:

1. From 1. we find that β̂p is not unbiased unless ~βr = ~0 or Xp and Xr are orthogonal.

2. From 3. estimates from the complete model have a higher (or equal) variance than the equivalent
estimates from the subset model. Therefore removing variables from the model does not increase
the variance of estimates for the remaining parameters. The estimates are in general biased
but have smaller variance.

3. From 4. we can derive that if a variable xi from the true model is omitted from the model, but
has a ”small” slope βi then the MSE for the slopes of remaining variables can be smaller for
the incomplete model than for the complete true model.

2



4. From 5. σ̂2 is a biased estimator for σ2 if ~βr 6= ~0 and Xp and Xr are not orthogonal, in fact
the estimate for σ2 from the incomplete model is overestimating the true value.

5. From 6. Ŷ is a biased estimate of Y if ~βr 6= ~0 and Xp and Xr are not orthogonal. The MSE from
the incomplete model can be smaller than for the complete model if the slope of the omitted
variables is small enough.

Therefore, removing relevant variables from the model adds bias to the estimates, if the design is not
orthogonal. On the other hand the variance in the estimates is smaller than for the complete model.
Taking these two together, when omitting variables from the model with only small effects on the
response the MSE for the estimates based on the reduces model can be smaller than for the complete
model.

Adding variables of no relevance to the model, also adds bias, and increases variance, which is always
bad.

7.2 Evaluating Models

The most commonly used criteria for model selection are the Adjusted Coefficient of Determination,
R2

a, and the Residual Sum of Squares, SSRes:

1. The residual sum of squares measure for a model M , SSRes(M), gives the amount of varia-
tion, which can not be explained by the model. Therefore it is a reasonable goal to find the
model with the smallest SSRes(M), but adding a variable to a given model never increases
SSRes(M). Therefore the model with all K variables will always be ”best” in terms of mini-
mizing SSRes(M). Therefore conducting (extra sum of squares) tests if the addition of another
variable significantly decreases SSRes(M) to decide if the variable should be included with the
”best” model are conducted.

I.e. an optimal model, is such that the addition of any of the not included variables is not
significantly decreasing SSRes(M), AND the removal of a variable in the model results in a
significant increase in the SSRes(M).

Since the definition is not based on a global measure, several models might satisfy the above
definition of an optimal model.

2. Recall that for a model M

R2
a(M) = 1− SSRes(M)/n− p

SST/(n− 1)
= 1− MSRes(M)

MST

SST and MST are the same for all models, since they measure the total variance in the response,
regardless of the predictors.

R2
a(M) is adjusted for the number of predictors in the model, p. It does not increase for every

variable added to the model and therefore is a good measure of fit.

The ”best” model in regard to R2
a(M) is the model M with largest R2

a(M).
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Alternative measures are Akaike’s Information Criterion (AIC), and the Bayesian Information Cri-
terion (BIC, from Schwartz).
Both are based on the likelihood, L, of the estimated model and a penalty for the number of slope
parameters in the model.

AIC = −2ln(L) + 2p, BIC = −2ln(L) + pln(n)

We prefer model with a large like lihood, which means with small AIC and BIC.
Of these two measures BIC is used more often used in applied statistics.

If the number of variables is the same in two models the penalty for the two models is the same and
AIC, BIC, and R2

adj will prefer the same model.
The penalty for extra parameters is different and therefore the three measures can potentially lead
to the recommendation of different models.

7.3 Techniques for Model Selection

To find the SSRes optimal and R2
a best models all possible models can be analyzed.

1. In order to find all the optimal models in regard to the residual sum of squares, for each model
the conditions for optimality have to be checked. For K variables there are 2K possible models
to be considered, for each model K tests have to be conducted.
For K = 3, there are 24 tests.
For K = 4, there are 56 tests.
For K = 10, there are 10240 tests.
This seems unreasonable.

2. To find an R2
a best model, at least all models have to be fit and evaluated, therefore 2K models

have to be analyzed. Even this is too much (K = 10, then 210 = 1024).

This might be doable for up to 4 variables, but beyond the amount of tests and analyses seem
computationally unreasonable.
Stepwise procedures have been developed to help finding optimal models, all three procedures result
in optimal models, but the optimal models might be all different.

For a model M and a variable v, the model M + v is defined to be the model including all variables
in M and v. Analogously define M − v.

Forward selection

1. Let i = 0. The initial model is M0 including only the intercept.

2. Until no variable v can be added to Mi to significantly improve SSRes(Mi).

Use the extra sum of squares test for each variable v not in Mi, if its addition significantly
decreases SSRes(Mi).

If such a variable can be found add variable v with largest F-statistic F0(v).

i← i+ 1.
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Backward elimination

1. Let i = 0. The initial model is M0 including all K variables.

2. Until no variable v can be eliminated from Mi which does not significantly improve SSRes(Mi−
v).

Use the extra sum of squares test for each variable v in Mi to test if its addition to Mi− v
significantly decreases SSRes(Mi − v).

If such a variable can be found eliminate variable v with smallest F-statistic F0(v).

i← i+ 1.

Stepwise Regression
For stepwise regression forward selection and backward elimination are combined.
Before considering to enter another variable, all variables entered so far are reassessed. If it is
determined that a variable should be eliminated after others have been added, this is done at this
time.

In contrast to the other procedures the number of variables in the model can go up AND down
during this procedure, whereas in the the other procedures, either the model was strongly increasing
or decreasing.

Example 7.1.
We will use the data on academic success in Californian Elementary schools to illustrate the three
procedures.

The variables in the data set:
api00 - academic performance of the school,
acs-k3 - average class size in kindergarten through 3rd grade,
acs-46 - average class size in grades 4-6
meals - percentage of students receiving free meals,
full - percentage of teachers who have full teaching credentials,
growth - growth 1999 to 2000
ell - English language learners
hsg - at least one parent is a Highschool graduate
some-col - percent of children with at least one parent with some college education
enroll - enrollment

To do automatic model selection with R, use library ”leaps”. The function ”regsubsets” in this
library can be used to find optimal models depending on the number of variables in the model.

library(leaps)

nona<-na.omit(elemapi.data)

attach(nona)
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#for finding best model with up to 6 variables

l<-regsubsets(x=cbind(growth,meals,ell,acs_k3,acs_46,some_col,full),y=api00,

method="exhaustive", intercept=TRUE, nvmax=6)

summary(l)

Subset selection object

7 Variables (and intercept)

1 subsets of each size up to 6

Selection Algorithm: exhaustive

growth meals ell acs_k3 acs_46 some_col full

1 ( 1 ) " " "*" " " " " " " " " " "

2 ( 1 ) " " "*" " " " " " " " " "*"

3 ( 1 ) " " "*" "*" " " " " " " "*"

4 ( 1 ) "*" "*" "*" " " " " " " "*"

5 ( 1 ) "*" "*" "*" " " "*" " " "*"

6 ( 1 ) "*" "*" "*" " " "*" "*" "*"

f<-regsubsets(x=cbind(growth,meals,ell,acs_k3,acs_46,some_col,full),y=api00,

method="forward",intercept=TRUE, nvmax=4)

summary(f)

Subset selection object

7 Variables (and intercept)

1 subsets of each size up to 6

Selection Algorithm: forward

growth meals ell acs_k3 acs_46 some_col full

1 ( 1 ) " " "*" " " " " " " " " " "

2 ( 1 ) " " "*" " " " " " " " " "*"

3 ( 1 ) " " "*" "*" " " " " " " "*"

4 ( 1 ) "*" "*" "*" " " " " " " "*"

5 ( 1 ) "*" "*" "*" " " "*" " " "*"

6 ( 1 ) "*" "*" "*" " " "*" "*" "*"

b<-regsubsets(x=cbind(growth,meals,ell,acs_k3,acs_46,some_col,full),y=api00,

method="backward",intercept=TRUE, nvmax=6)

summary(b)

Subset selection object

7 Variables (and intercept)

1 subsets of each size up to 6

Selection Algorithm: backward
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growth meals ell acs_k3 acs_46 some_col full

1 ( 1 ) " " "*" " " " " " " " " " "

2 ( 1 ) " " "*" " " " " " " " " "*"

3 ( 1 ) " " "*" "*" " " " " " " "*"

4 ( 1 ) "*" "*" "*" " " " " " " "*"

5 ( 1 ) "*" "*" "*" " " "*" " " "*"

6 ( 1 ) "*" "*" "*" " " "*" "*" "*"

In the first output it shows the best models for 1, 2, up to 6 variables in the model. When the
number of variables is fixed, all criteria lead to the same model, only when comparing models with
different number of variables decision might deviate.
The second output, shows the best model for 1, 2, 3, etc. variables choosing the model using the
forward selection procedure.
The last output, shows the best model for 1, 2, 3, etc. variables choosing the model using the
backward elimination procedure.
Surprisingly all methods result in the same models for all the different number of variables. This is
not necessary.
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