
10 Ridge Regression

In Ridge Regression we aim for finding estimators for the parameter vector ~β with smaller variance
than the BLUE, for which we will have to pay with bias.
To study a situation when this is advantageous we will first consider the multicollinearity problem and
its implications. Then ridge estimators are introduced and their statistical properties are considered.

10.1 Multicollinearity

Vectors ~x1, . . . , ~xk are called collinear if there exist a1, . . . , ak ∈ R such that

a1~x1 + · · ·+ ak~xk = ~0

If the vectors of the predictor values are collinear, than the design matrix does not have full rank
and consequently the normal equation

X ′X~β = X ′~Y

has no unique solution.
When the predictor vectors are ”nearly” collinear it already has implications on the precision in the
estimation of the parameter vector, and this is considered the multicollinearity problem
Multicollinearity can have different reasons:

1. Sampling method (in real estate only include large houses on large lots and small houses on
small lots)

2. Population constraints (only such properties as described in 1. exist in the area of interest)

3. Model specification (property sizes are included in square-feet and square meters)

4. Overdefined model (using more variables than samples, p > n)

Lemma 1.
Let R2

j be the coefficient of determination from the regression of xj on the remaining p−1 predictors

(regressors). Then the jth diagonal entry of the covariance matrix of β̂, σ2(X ′X)−1, is

Cjj =
σ2

1−R2
j

, 1 ≤ j ≤ p

The problems:

1. In the case of multicollinearity at least one of the R2
j is close to one (indicating the almost

linear dependency of the predictor variables). Then the lemma implies that the variance of the
least squares estimator for this slope of this predictor is very large. Indicating that it is likely
to find estimates which fall far from the true value.

1



2. Remember that for an estimator β̂∗

MSE(β̂∗) = E(β̂∗ − ~β)′(β̂∗ − ~β)

the expected squared Euclidean distance between β̂∗ and ~β. Thus, an estimator with small
MSE is close to the true parameter vector.

The Mean Square Error for β̂ (because β̂ is unbiased) is given by

MSE(β̂) = σ2trace((X ′X)−1)

which according to the lemma will be large in the presence of multicollinearity.

3. It is
E(β̂′β̂) = ~β′~β + σ2trace(X ′X)−1

Indicating that the estimated vector tends to be longer than the true parameter vector.

Checking for Multicollinearity:

1. Check if any of the R2
j , 1 ≤ j ≤ p are close to 1.

2. (Text book) Equivalently one can check the variance inflation factors

V IFj = Cjj =
1

1−R2
j

, 1 ≤ j ≤ p

They are considered large if they exceed 5 or 10 (R2
j > 0.8 or 0.9).

3. Investigate the eigenvalues of X ′X. The condition number

κ =
λmax
λmin

If κ < 100, no problem.

Condition indices

κj =
λmax
λj

to identify variables involved in the multicollinearity.

4. etc.

R-code

library(car)

model<-lm(y~x1+x2+x3)

vif(model)

R2<- 1-1/vif(model) # R_j^2 values easier to interpret!

Remedies:

1. Collect additional data

2. Remove highly correlated model

3. Ridge regression
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10.2 Ridge Regression

The goal is to replace the BLUE, β̂, by an estimator β̂∗, which might be biased but has smaller
variance and therefore smaller MSE and therefore results in more stable estimates.

As additional resource for this chapter also take a look at:
http://www.stat-athens.aueb.gr/ jpan/diatrives/Mitsaki/chapter3.pdf
Not all from this document will be covered in this course, but more than in the text book.

Definition 10.1.
The ridge estimator of ~β in the MLRM for a k ≥ 0 is defined by

β̂R(k) = (X ′X + kI)−1X ′~y

Lemma 2.

1. For k = 0: β̂R(0) = β̂.

2. The ridge estimator for k ≥ 0 is the solution of the modified normal equation

(X ′X + kI)β̂∗ = X ′~y

3. The ridge estimator is a linear combination of the BLUE β̂ for k ≥ 0.

4. For k 6= 0
β̂R(k)′β̂R(k) < β̂′β̂

5. For k ≥ 0
Cov(β̂R(k)) = σ2(X ′X + kI)−1X ′X(X ′X + kI)−1

6.

MSE(β̂R(k)) = σ2tr((X ′X + kI)−1X ′X(X ′X + kI)−1) + k2~β′(X ′X + kI)−1~β

= σ2

p∑
j=1

λj
(λj + k)2

+ k2~β′(X ′X + kI)−1~β

where λ1, . . . , λp are the eigenvalues of X ′X.

7. The residual sum of squares based on β̂R(k) are

SSRes(β̂R(k)) = (~Y −Xβ̂R(k))′(~Y −Xβ̂R(k))

= (~Y −Xβ̂)′(~Y −Xβ̂) + (β̂R(k)− β̂)′X ′X(β̂R(k)− β̂)

Proof. Only 3.: Since X ′~y = (X ′X)(X ′X)−1X ′~y = (X ′X)β̂, we get

β̂R(k) = (X ′X + kI)−1X ′~y = (X ′X + kI)−1(X ′X)β̂ = Zkβ̂

a linear combination of β̂ with Zk = (X ′X + kI)−1(X ′X).
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From 6. we find that the larger k the larger the bias in β̂R(k), but the smaller the total of the
variances of β̂Rj(k). Therefore the goal is to find a k, where the reduction in variance is larger than
the increase in the squared bias. The existence theorem below assures that such a k exists.
From 7. one concludes that the residual Sum of Squares increase when using ridge regression, and
therefore R2 will decrease. Which was to be expected.

Theorem 10.1.
(Existence) ∃k > 0 such that

MSE(β̂R(k)) < MSE(β̂)

The Shrinkage-property of the ridge estimator:
Given a certain value of SSRes(> SSRes(β̂)) greater than the one which can be accomplished using
the BLUE. Then we can consider all linear estimators which would give these SSRes, between these
the ridge estimator has smallest norm.
More mathematical: β̂R(k) is the solution to

minβ̂∗ β̂∗ ′β̂∗

subject to (β̂∗ − ~β)′X ′X(β̂∗ − ~β) = SSRes(β̂R(k))

This implies that the ridge estimator ”shrinks” the vector of estimates given the value of SSRes. The
proof of this statement is based on the application of Lagrange multipliers to solve this problem.
Which is telling that the above problem to β̂R(k) being the solution to

minβ̂∗(~y −Xβ̂∗)′(~y −Xβ̂∗) + kβ̂∗ ′β̂∗

Standardization of X and y
In order to assure that after adding a constant c to the response vector the same result would be
obtained, the intercept β0 should not be included with the last term. In order to reduce the dimension
of the problem one can center the X matrix (subtract the respective column means from the entries),
which means that the intercept β0 = ȳ, which means if we also centre ~y, we do not need the intercept
at all.
Also if the predictors are measured on different scales then βi are measured on different scales, one
is possible the price per sq.ft. and the other the price per swimming pool. Which means that one
could outweigh the other in the penalty term. Therefore it is best in such cases to also scale ~y and
X.
Therefore it is advisable to first standardize (z-scores) ~y and X before performing ridge regression.

Finding the ridge estimator for a given k:
To find β̂R one can use Ordinary Least Squares software (like lm from R), after augmenting the
design matrix and the response vector as follows

XA =

[
X√
kIp

]
, ~y =

[
y
~0p

]
Observe that, if p ≤ n it holds that rank(XA) = p and the ridge estimator is always unique for a
given k.
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Choosing k:
Choosing k is an unsolved problem. A lot of research has been conducted in choosing the ”best” value
for k. Here only four possible methods for choosing k (the ones implemented in the lm.ridge function
in R) will be described. In http://www.stat-athens.aueb.gr/ jpan/diatrives/Mitsaki/chapter3.pdf
you can find the description of 16 different ways for making this choice.

1. Examine the ridge trace
Plot either β̂Rj(k) or as shown in the figure below the values of the test statistics for testing
if βj = 0 for different values of k ∈ [0, 1] and choose the smallest k after the values become
stable.

The figure (λ is used here instead of k) indicates that k = 0.1 or k = 0.15 could be a good
choices.

2. The HKB estimator proposed by Hoerl, Kennard, Baldwin (1975):

k =
pσ̂2

β̂′β̂

They could show with the help of simulations that the ridge estimator using this k significantly
improves the MSE over β̂.

3. L-W estimator proposed by Lawless, Wang (1976), based on Bayesian arguments.

k =
pσ̂2∑
λiα̂2

i

with λi being the eigenvalues ofX ′X, and α̂i are the least squares estimates of the reparametrized
MLRM, with α̂ = P ′β̂, where P is the matrix of eigenvectors of X ′X with P ′P = I.
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4. A method for choosing k was proposed by Golub et al.(1979) called the generalized-cross
validation method (GCV). The leading idea in this approach is to minimize the total squared
distances between the measured and the fitted values standardized by the square of their mean
variances. The advantage of this approach is that it is applicable even if p ≥ n.

Warning Remark:
All four methods discussed provide values for k, which depend on the data, which means that k
becomes a random variable!
But the properties for the ridge estimator discussed earlier all hold for a given fixed (deterministic)
value of k. This is problematic, and it is not clear if the properties remain true for random k.
Simulation studies from many authors suggest that they stay intact, but no proofs have been given
yet.

This is the reason the ”lm.ridge” function does not include tests.
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