
6 Dealing with Model Assumption Violations

If the regression diagnostics have resulted in the removal of outliers and influential observations, but
the residual and partial residual plots still show that model assumptions are violated, it is necessary
to make further adjustments either to the model (including or excluding predictors), or transforming
the response and/or predictors, and/or weighting the measurements, and if this all does not help
switching to a different model or estimation method entirely.
If the inclusion or exclusion of predictors do not resolve the concerns about the violation of the model
assumptions further approaches can be used.
Depending on the type of violation different remedies can help.

6.1 Transformations

Transformations can help when

1. the homoscedasticity assumption, or

2. the linearity assumption, or

3. normality

is violated.

6.1.1 Heteroscedasticity

If the assumption of constant variance is violated, the least squares estimators are still unbiased, but
the Gauss-Markov theorem does not hold anymore, and standardized scores do not have the assumed
distribution, and therefore test results and confidence intervals are unreliable. Usually the standard
errors of the regression coefficients are too large.
A transformation of the response variable can help to resolve such a problem. Depending on the
type of violation, different transformations are helpful:
Useful transformations:

Relationship between the error Transformation of Y
variance and the mean response

σ2 ∝ E(Y ) square root
σ2 ∝ E(Y )2 log

σ2 ∝ E(Y )3 reciprocal square root (1/
√

(y))
σ2 ∝ E(Y )4 reciprocal

σ2 ∝ E(Y )(1− E(Y )) if 0 ≤ Y ≤ 1, arcsin, (sin−1(
√

(y))

However, after applying the transformation the interpretation of the regression coefficients is not
straight forward anymore, and the inverse transformation is not necessarily resulting in unbiased
estimates on the original scale.
Confidence intervals and prediction intervals though can be transformed back to the original scale.
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Example 6.1.
The data set consists on 400 randomly sampled elementary schools from the California Department
of Education’s API in the 2000. This data file contains a measure of school academic performance
(api00) as well as other attributes of the elementary schools, such as, class size, enrollment, poverty,
etc.
Does enrollment have an effect on academic performance?

The scatterplot indicates the higher the enrollment the lower the academic success.
Fitting the model

api00 = β0 + β1enrollment+ ε

results in the following residual plots
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Both indicate a violation of the assumption of homoscedasticity. To investigate the nature of the
relationship of the violation plot the squared residuals against the fitted values.

Trying the different transformations suggested in the table above

1/
√
api00 = β0 + β1enrollment+ ε

results in the following residual plots

the best of the four.
The fitted curve based on the transformed model is
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The transformation of the model ensures that the model assumptions are met, and improves the
fit of the model to data and hopefully therefore to the population. Tests and confidence intervals
become reliable statements which hold the associated error probabilities.
But by transforming the response variable we loose the straight forward interpretation of the estimate
of β̂.

6.1.2 Non-linear Relationships

If the scatterplot for response and predictor does indicate a non linear relationship transformations
of the response and/or predictor can result in a linear model for fitting the non-linear relationship.
The easiest example is to permit for a polynomial relationship, Where the model becomes:

Y = β0 + β1x+ β2x
2 + · · ·+ βkx

k + ε, ε ∼ N (0, σ2)

Some other non-linear relationships we can deal with by transforming the response and/or predictor
variable(s) are given in the graphs and table below.
In general a non-linear regression model should be considered.
Some non-linear relationships which can be dealt with by transformations are:

Function Transformations of x and/or y Resulting model
y = β0x

β1 y′ = log(y), x′ = log(x) y′ = log(β0) + β1x
′

y = β0e
β1x y′ = ln(y) y′ = ln(β0) + β1x

y = β0 + β1log(x) x′ = log(x) y = β0 + β1x
′

y =
x

β0x− β1
y′ =

1

y
, x′ =

1

x
y′ = β0 − β1x′

4



The transformation have a large influence on the error structure. The assumption is that the error
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in the transformed model is normal with mean 0 and constant variance σ2.
E.g. looking closer at the second transformation:
The MLRM is

log(Y ) = log(β0) + β1x+ ε

which is equivalent to (take e to the power of sides):

Y = β0e
β1xeε

Since we assume that ε is normal, this implies that the multiplicative error in the model for Y is log
normal (it’s logarithm is normal).
To check model assumption the transformed model has to be checked using residuals and influence
measures.

Example 6.2.
The sample analyzed consists of 50 observations of per capita expenditure on public schools and per
capita income for each state and the District of Columbia in 1979. Wisconsin was removed because
no information was available on the per capita expenditure for public schools.

The scatterplot suggest a quadratic relationship. Use the data to fit the model

expend = β0 + β1(income) + β2(income)
2 + ε

Resulting in:
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The residual plot shows that for states with larger per capita income the variation in the per capita
expenditure is larger than for states with lower per capita income. This is in violation of the MLRM
assumption.
Using the log transformation for the per capita expenditure results in the following scatterplot:

Showing a linear relationship.
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Fitting
log(expend) = β0 + β1(income) + ε

results in the following residual plot:

This residual plot for the transformed model shows a big improvement over the residual plot for the
initial model. Tests and confidence intervals based on this model are more reliable than for the first
model.

6.1.3 Choosing a Transformation

6.1.4 Box-Cox: transforming the response

Another violation which can be coped with by transforming the data is non-normality of the error.
Box and Cox(1964) developed a method for choosing the ”best” transformation from the set of power
transformations to correct for this violation.
The set of power transformations can be parameterized with the following definition

Definition 6.1.
Let λ ∈ R, then

y(λ) =


yλ − 1

λ ỹλ−1
, λ 6= 0

ỹ ln(y), λ = 0

where

ỹ = e

1

n

n∑
i=1

ln(yi)

is the geometric mean of the observations.
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The geometric mean is a scaling factor, which enters the equation when finding the maximum like-
lihood estimators for λ and ~β simultaneously. It makes the residual sum of squares for different λ
comparable.

Choosing λ
No formula exists which will produce the value of λ, which will produce the smallest residual sum
of squares for a transformation y(λ), SSRes(λ). Therefore usually SSRes(λ) is found for a number of
different values for λ, which are then plotted against λ. From the graph then the λ with the smallest
SSRes(λ) can be read. This procedure can be done iteratively, by first determining a rough estimate
and then investigating the neighbourhood of the rough estimate using a finer grid.
Once λ has been decided on, sometimes after rounding so that the result is an easier to interpret
model (use λ = 0.5 instead of λ = 0.473). The transformation yλ is used in the analysis, omitting
the scaling factor, which was only necessary to make the sum of squares comparable.

A confidence interval for λ
Based on the theory about maximum likelihood a (1− α)× 100% confidence interval for λ is given
by all λ with

L(λ̂)− L(λ) ≤ 1

2
χ2
α,1

where

L(λ) = −1

2
nln[SSRes(λ)]

is the log likelihood function.
This is equivalent to all λ with

L(λ) ≥ L(λ̂)− 1

2
χ2
α,1

or all λ with
SSRes(λ) ≤ SSRes(λ̂) eχ

2
α,1/n

The bounds can be found graphically by including a horizontal line with the plot of λ against
SSRes(λ).

Continue Example. Go back to the blood pressure example and find the confidence interval for λ.
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λ L(λ)
-6.07 -5.49
-5.5 -5.07
-5.0 -4.62
-4.5 -4.18
-4.0 -3.76
-3.5 -3.40
-3.0 -3.12
-2.5 -2.97
-2.0 -2.96
-1.5 -3.10
-1.0 -3.38
-0.5 -3.76
0.0 -4.28
0.5 -4.74
1.0 -5.26
1.5 -5.80
2.0 -6.32

According to the graph the 95% confidence interval for λ falls between -5.3 and 0.5, with λ̂ ≈ −2.1.
In particular 1 is not the confidence interval indicating that some transformation should be done to
make the residuals more normal, and the residual sum of squares smaller, and therefore result in a
better fit of the model. A good choice for λ seems to be -2.
The model would be

1

Y 2
= β0 + β1(weight) + β2(age) + ε

Comparing the fit of the two models give an adjusted R2 for the original model of 0.9729, and
for the transformed model of 0.9858. The already well fitting model could be improved by the
transformation.
Plotting the observed versus the fitted blood pressure for the two models illustrates the same fact,
the model based on the transformation fits better than the original model.
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6.1.5 Transforming a predictor

In some instances the residual plots or the initial scatter plots indicate a non linear relationship
between a regressor and the response, which can be linearized by transforming the regressor.
Consider the following model (one regressor to illustrate, but also applies to MLRMs)

Y = β0 + β1t(x) + ε, ε ∼ N (0, σ2)

Where t is a function t : R 7→ R.
Box and Tidwell (1962) proposed an analytic approach to choosing the transformation t.
Let

tα(x) =

{
xα, α 6= 0
ln(x), α = 0

then for the model given above with t = tα

E(Y ) = β0 + β1tα(x) = f(β0, β1, tα)

Their iterative approach is based on the Taylor series for f about an initial guess α0 = 1, see
MPV(pg.186).
The process:

1. Start with an initial guess α0 = 1, and let i = 0.

2. Until you are convinced to have found a proper value for α, repeat

Find β̂1,i from fitting the model Y = β0,i + β1,ix
αi + ε

Let w = xαiln(xαi)

Find γ̂ from fitting the model Y = β∗0,i + β∗1,ix
αi + γw + ε∗
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The new guess for α is

αi+1 =
γ̂

β̂1,i
+ 1

Let i <– i+ 1.

Continue Example. Use R to find the Box Tidwell transformation for WEIGHT in the blood
pressure model.

library(car)

attach(BP.data)

boxTidwell(BP~WEIGHT,~AGE,verbose=TRUE)

Generating the following output:

iter = 1 powers = 2.782409

iter = 2 powers = 2.789993

iter = 3 powers = 2.790411

Score Statistic p-value MLE of lambda

0.8651332 0.3869657 2.790411

iterations = 3

The output give α ≈ 2.79, so we could use transformations WEIGHT2 or WEIGHT3. Both do not
improve the model fit, which was expected since the Score Statistic does not indicate a significant
improvement.

Continue Example. Analyze again the per capita expenses on education and the mean per capita
income in the different American states.

> boxTidwell(expend~income, verbose=TRUE)

iter = 1 powers = 5.053827

iter = 2 powers = 5.143801

iter = 3 powers = 5.162594

iter = 4 powers = 5.166507

Score Statistic p-value MLE of lambda

2.939926 0.0032829 5.166507

iterations = 4

The Box Tidwell procedure suggest a polynomial of degree 5.

summary(lm(expend~poly(income,5)))

Shows improved model fit for the model of expenditure being a polynomial of degree 5 in income.
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 373.260 6.819 54.739 < 2e-16 ***

poly(income, 5)1 507.011 48.217 10.515 1.39e-13 ***

poly(income, 5)2 173.291 48.217 3.594 0.000818 ***

poly(income, 5)3 100.842 48.217 2.091 0.042294 *

poly(income, 5)4 108.461 48.217 2.249 0.029537 *

poly(income, 5)5 163.584 48.217 3.393 0.001474 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 48.22 on 44 degrees of freedom

Multiple R-squared: 0.7665,Adjusted R-squared: 0.74

F-statistic: 28.89 on 5 and 44 DF, p-value: 7.308e-13

6.2 Generalized and Weighted Least-Squares

In order to deal with a violation of the homoscedasticity assumption is to generalize model, by
permitting, a less restrictive form for the covariance matrix of the error.
The General Multiple Linear Regression Model (GMLRM) is given by

~Y = X~β + ε, ε ∼ N (~0, σ2V )

For this model the (ordinary) least squares estimator β̂ is no longer appropriate. It is still unbiased,
but not any longer providing the estimate with smallest variance.
The matrix V

1. V is non singular and positive definite. (A matrix A is called positive definite, iff ~x ′A~x > 0, for
all ~x ∈ Rn \ {~0}). V has to be positive definite since σ2~x ′A~x = V ar(~x ′~ε) > 0 if x ∈ Rn \ {~0}.
Positive matrices are not singular.

2. V = KK, for some symmetric matrix K ∈ Rn×n. (This matrix exists because V is positive
definite, K is called the square root of V .)

3. It is usually assumed that V is known, but σ2 is not. Therefore V gives the structure of
variances and covariances in the sample.

In order to be able to apply the finding on least squares estimator from earlier. The matrix K is
used to transform the model in such a way that it fits a MLRM, for which we know the least squares
estimator etc..

Theorem 6.1.
Let

~Z = K−1~Y , B = K−1X, ~g = K−1~ε

Then the by K−1 transformed model is

~Z = B~β + ~g

is a MLRM with ~g ∼ N (~0, σ2In)
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Proof:
Since ~g = K−1~ε it is a linear combination of normally distributed random variables and therefore
normal, with

E(~g) = E(K−1~ε) = K−1E(~ε) = K−1~0 = ~0

and
Cov(~g) = Cov(K−1~ε) = K−1Cov(~ε)K−1 = K−1σ2V K−1 = σ2K−1KKK−1 = σ2In

q.e.d.
The least squares estimate for ~β derived from this model must then be the least squares estimate of
the GMLRM.
The normal equation for the transformed model is

B′Bβ̂ = B′ ~Z

⇔ X ′K−1K−1Xβ̂ = X ′K−1K−1~Y

⇔ X ′V −1Xβ̂ = X ′V −1~Y

with solution
β̂ = (X ′V −1X)−1X ′V −1~Y

β̂ is called the generalized least squares estimator of ~β.

Lemma 1.
The generalized least squares estimator of ~β, β̂, is unbiased and has covariance matrix Cov(β̂) =
σ2(X ′V −1X)−1.

The residual sum of squares for the GMLRM is

SSRes = ~Z ′ ~Z − β̂′B~Z = ~Y ′V −1~Y − ~Y ′V −1X(X ′V −1X)−1X ′V −1~Y

The regression sum of squares

SSR = β̂′B~Z − 1

n
~Z ′Jn ~Z = ~Y ′V −1X(X ′V −1X)−1X ′V −1~Y − 1

n
~Y ′K−1JnK

−1~Y

The total sum of squares

SST = ~Z ′ ~Z − 1

n
~Z ′Jn ~Z = ~Y ′V −1~Y − 1

n
~Y ′K−1JnK

−1~Y

In general the error covariance matrix is not known, but choosing some structure to it permits the
fit of more general models, for example in time series.
Here we will focus on Weighted Least Squares Regression, which shall help in the case when the
homoscedasticity assumption is violated in the ordinary least squares model.
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6.2.1 Weighted Least Squares

If we can assume that the errors are uncorrelated, but that the variance of the errors are NOT the
same, then the covariance matrix of ~ε can be written as

Cov(~ε) = σ2V = σ2


1/w1 0 . . . 0

0 1/w2 . . . 0
...

. . .
...

0 . . . 0 1/wn


Using this shape for the covariance matrix of ~ε in the general least squares model, is called weighted
least squares regression model or weighted multiple regression model(WMLRM).
Let

W = V −1 =


w1 0 . . . 0
0 w2 . . . 0
...

. . .
...

0 . . . 0 wn


then the least squares estimator for ~β in the WMLRM is given by

β̂ = (X ′WX)−1X ′W~Y

To obtain this estimate from R and get the proper output add an option weight to lm

lm(BP~AGE+ WEIGHT, data=BP.data, weights=wghts)

with wghts being the variable including the weights for each measurement.

What happens when the ordinary least squares estimator is used, when V 6= In?
In this cases β̂o = (X ′X)−1X ′~Y is still unbiased, but does not have smallest variance anymore. (Gauss
Markov fails for β̂o). Therefore weighted least squares is preferable over ordinary least squares in
this situation.

The biggest problem with weighted least squares consists of the assumption that the weights are
assumed to be known. The most common application of weighted least squares when measurement
yi represents the average of ni measurements for x1i, . . . , xki. In this case the sample sizes ni are used
as the weights.

In other instances a residual analysis leads to the observation that V ar(ε) is proportional to one of
the predictor variables, xj, so that wi = 1/xij is a good choice.
In many practical situations the weights have to be guessed, and an analysis might show how to
improve on the guess until a proper fit can be achieved.

Example 6.3.
See MPV example 5.5 on page 192.
Data has been collected on average monthly income from food sales and annual advertising expenses
for 30 restaurants. See the data in the text book or below imbedded in the R code.

15



When fitting the MLRM

income = β0 + β1expense + e, e ∼ calN(0, σ2)

we find and adjusted R2 = 0.9544, but the residual plots are indicating a violation of the homoscedas-
ticity assumption.

According to the data on the expenses one can observe that some of the restaurants are very similar
in their budget on advertising. We could interpret those as repeated measurements, giving us an
opportunity to estimate the variance in the expense from them.
We group observations with similar expenses together and calculate within each group the mean
expense (predictor) and the variance of the income (response. To see how the variance of the income
is associated with the expense consider the following plot

From this model it seem reasonable to estimate the variance in the income from the expenses using
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the SLRM
S2
Income = β0 + β1mean(Expense) + e

Fitting this model we find the regression equation to be

s2Income = −9226002 + 7782 ∗mean(Expense)

Now this formula is used to estimate the variance in Income for each restaurant based on their
Expense.
The inverse of these estimated variances are reasonable choices for weights in a WMLRM. If the
weights are good we should expect that the model variance and standard deviation in the weighted
model are close to 1.
The new model with weights wi for restaurant i (each restaurant has now a different variance)

incomei = β0 + β1expensei + e, e ∼ N (0, σ/
√
wi)

When fitting this model the adjustedR2 = 0.9716.
And the residual plots showing the weighted residuals ew.i =

√
wiei =

√
wi(yi − ŷi) and weighted

fitted values, ŷw.i =
√
wiŷi show that weighing the measurement removed the apparent violation of

the homoscedasticity assumption.

The R code for this example

Income<-c(81464, 72661,72344,90743,98588,96507,126574,114133,115814, 123181,131434,140564,

151352,146926, 130963,144630,147041,179021, 166200, 180732,178187,185304, 155931,

172579, 188851, 192424, 203112, 192482, 218715, 214317)

Expense<- c(3000, 3150, 3085,5225, 5350, 6090, 8925,9015, 8885, 8950, 9000, 11345, 12275,

12400, 12525, 12310, 13700, 15000, 15175, 14995, 15050, 15200, 15150, 16800,

16500, 17830, 19500, 19200, 19000, 19350)

summary(Income)

summary(Expense)

plot(Income~Expense)
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Inc.mod<-lm(Income~Expense)

summary(Inc.mod)

plot(Inc.mod$residuals~Expense) # (clear pattern)

plot(Inc.mod$residuals~Inc.mod$fitted.values) # (clear pattern)

# near neighbours with regard to Expenses, 0s have no neighbours

groups<- c(1,1,1,2,2,0,3,3,3,3,3,4,4,4,4,4,0,5,5,5,5,5,5,6,6,0,7,7,7,7)

plot(Expense~groups)

# Remove measurements with no neighbours from analysis of variance

Expense.p<- Expense[groups>0]

Income.p<- Income[groups>0]

groups.p<- groups[groups>0]

means.Exp<-aggregate(Expense.p, list(groups.p), FUN=mean)

#st.dev.Inc<-aggregate(Income.p, list(groups.p), FUN=sd)

var.Inc<-aggregate(Income.p, list(groups.p), FUN=var)

plot(var.Inc$x~means$x, ylab="Variance in Income", xlab="Mean Expenses from groups" )

# the higher Expense the higher variance(Income)

var.mod<-lm(var.Inc$x~means$x)

summary(var.mod)

# now use this model to estimate the variance for each observation

predict.var<- -9226002 + 7782*Expense

plot(predict.var~Expense)

weights<-1/predict.var

weighted.mod<-lm(Income~Expense, weights = weights)

summary(weighted.mod)

weighted.res<- weighted.mod$residuals*sqrt(weights)

weighted.fit<-weighted.mod$fitted.values*sqrt(weights)

plot(weighted.mod$residuals~Expense) # much better

plot(weighted.res~Expense) # much better

plot(weighted.res~ weighted.fit)
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Example 6.4.
(Inspired by http://www.stat.cmu.edu/ cshalizi/350/lectures/18/lecture-18.pdf)

Simulate data with heteroscedastic error, the further x falls away from 0, the larger the variance.

x = rnorm(100,0,3)

y = 3-2*x + rnorm(100,0,sapply(x,function(x){1+0.5*x^2}))

plot(x,y)

abline(a=3,b=-2,lty=1)

fit.ols = lm(y~x)

abline(fit.ols$coefficients,lty=2,col="blue")

The solid line gives the true line, the dashed is the fitted line. And the residual plot clearly shows
the violation of homoscedasticity.
The squared residuals are indicative of the variance in the error
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Use

wght<-1/(1+0.5*x^2)

fit.wls = lm(y~x,weight=wght)
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The solid line is the correct fit y = 3 − 2x, the blue dashed line is the fitted line using OLS y =
4.60− 0.09x, and the red dotted line is the fitted line using WLS y = 3.07− 1.43x.
What do the confidence intervals say?

> confint(fit.ols) # Confidence intervals for OLS

2.5 % 97.5 %

(Intercept) 2.358142 6.8555990

x -0.775504 0.6022992

> confint(fit.wls) # Confidence intervals for WLS

2.5 % 97.5 %

(Intercept) 2.15419 3.9945709

x -1.96547 -0.9086006
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