
8 Nonlinear Regression

Nonlinear regression relates to models, where the mean response is not linear in the parameters of
the model.
A MLRM

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε, ε ∼ N (0, σ2)

has mean
E(Y ) = β0 + β1x1 + β2x2 + · · ·+ βkxk.

Even if the regressors xi are transformations of the explanatory variables like xi = z2
i , or xi = log(zi),

the mean response is still linear in β1, . . . , βk.
In nonlinear regression we consider models where the mean response is no longer linear in the model
parameters.

We will still assume that the error is added to the mean, so in general the non-linear regression model
has the following structure

Y = f(~x, ~β) + ε

with E(ε) = 0. Therefore E(Y ) = f(~x, ~β), and f is the expectation or mean function of the model.
For example

y = θ1e
θ2x + ε

has mean function f(x; θ1, θ2) = θ1e
θ2x, which is not linear in θ1 and θ2.

Definition 8.1.
Random variable Y fits a nonlinear regression model (NLRM) if there exist a function f : Rp×Θ→ R
with

Y = f(~x, ~β) + ε, ε ∼ N (0, σ2)

If f is linear in the parameter vector, the MLRM becomes a special case of the NLRM.

Some nonlinear models origin from the analysis of scatterplots, which might indicate that only a
nonlinear model can be fit to the data.
But quite often a nonlinear model arises from the insight into the subject matter for example a
certain relationship might arise as a solution of a differential equation.

Example 8.1.
(see MPV pg. 392) Incorporation of temperature into a second order kinetics model. Hydrolysis of
ethyl acetate is well modeled by a second order kinetics model. At is the amount of ethyl acetate at
time t, then

dAt
dt

= −kA2
t

with k being the rate constant, which depends on the temperature.
With A0 the amount of ethyl acetate at time 0, then the solution of the above differential equation
is

1

At
=

1

A0

+ kt
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which is equivalent to

At =
A0

1 + A0kt

The Arrhenius equation relates the reaction rate with the temperature, it is an empirical law which
is consistent with the observation, that for many common chemical reactions at room temperature
the reaction rate doubles for every 10 degree Celsius increase in temperature.

k = C1 exp

(
− Ea
RT

)
where C1 is a constant and Ea the activation energy, R the universal gas constant and T is the
temperature. Resulting in the following model the amount of ethyl acetate at time t

At =
A0

1 + A0 t C1 exp (−Ea/RT )

resulting in a nonlinear model of the form

At =
θ1

1 + θ2 t exp (−θ3/T )
+ εt

with θ1 = A0, θ2 = C1A0, and θ3 = Ea/R. This is a model in multiple predictors, time and
temperature.
Measurements on this model shall allow us to estimate the parameter of the model and estimate A0,
C1, and Ea.

8.1 Nonlinear Least Squares

In a equivalent approach as to MLRMs, the first goal is to provide estimates for the model parameters.
Again the criteria will be to choose the estimates in such a way that the total of the squared distances
of the measurements to the estimated mean function f̂ is as small as possible.
Mathematically:

min
~θ∈Θ

S(~θ) with S(~θ) =
n∑
i=1

[yi − f(~xi, ~θ)]
2

where the data are pairs of response yi and predictor value vector ~xi, 1 ≤ i ≤ n.
In order to find the solution θ̂, find the partial derivatives of S with respect to the different parameters
and set them to zero, resulting in p normal equations for p parameters.

n∑
i=1

(yi − f(~xi, θ̂))

[
∂f(~xi, ~θ)

∂θj

]
~θ=θ̂

= 0 1 ≤ j ≤ p

This system of equations is in general a nonlinear system and therefore hard to solve. In many cases
no closed - form solution exists and the solution has to be found using numerical (iterative) methods.

Example 8.2.
For the nonlinear example model given above:
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y = θ1e
θ2x + ε, ε ∼ N (0, σ2)

then

S(θ1, θ2) =
n∑
i=1

[yi − θ1e
θ2xi ]2

and the normal equations are:

n∑
i=1

[yi − θ̂1e
θ̂2xi ][eθ̂2xi ] = 0

n∑
i=1

[yi − θ̂1e
θ̂2xi ][θ̂1xie

θ2xi ] = 0

which are equivalent to
n∑
i=1

yie
θ̂2xi − θ̂1

n∑
i=1

e2θ̂2xi = 0

θ̂1

n∑
i=1

yixie
θ2xi − θ̂2

1

n∑
i=1

xie
2θ̂2xi = 0

if θ1 6= 0 these are equivalent to

n∑
i=1

yie
θ̂2xi − θ̂1

n∑
i=1

e2θ̂2xi = 0

n∑
i=1

yixie
θ̂2xi − θ̂1

n∑
i=1

xie
2θ̂2xi = 0

This system is not linear in θ̂1 and θ̂2. Each system of normal equations has to be studied in order
to find, if the solution is unique, if the iterative methods converge and how to find solutions for the
system, etc.
Just finding estimates for the model parameters can be very challenging in nonlinear regression.

8.2 Linearization for finding parameter estimates

Since we know how to find least squares estimators in the linear model, the question arise if we can
use this to find solutions for nonlinear models.
One method for finding approximations to the least squares estimators in the nonlinear model is
based on the linear terms of the Taylor series of f about a point ~θ′0 = (θ10, θ20, . . . , θp0).

The complete Taylor series of f about a point ~θ′0 = (θ10, θ20, . . . , θp0) is given by

f(~x, ~θ) =
∞∑
k=0

p∑
j=1

[
∂kf(~x, ~θ)

∂θkj

]
~θ=~θ0

(θj − θj0)k

k!

Using only the two first terms result in an approximation of f :
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f(~x, ~θ) ≈ f(~x, ~θ0) +

p∑
j=1

[
∂f(~x, ~θ)

∂θj

]
~θ=~θ0

(θj − θj0) =: g(~xi, ~θ, ~θ0)

The idea for finding the approximate least squares estimates for a given situation is as follows:

1. Start with an initial value ~θ0.

2. Using the LINEAR function g find the least squares estimate for θ in the MLRM given by this
function (the design matrix will have entries from the partial derivatives evaluated at the data

points xi using ~θ0). Call this solution θ̂1.

3. Set ~θ1 = θ̂1 (your currently best solution) and repeat step 2 replacing ~θ0 by ~θ1 resulting in a
new estimate θ̂2.

4. Continue this process until you do not observe ”relevant” changes in R2
adj or the parameter

vectors.

The following is a worked out algorithm indicated in the steps above:

1. Set

f 0
i = f(~xi, ~θ0)

β0
j = θj − θj0

Z0
ij =

[
∂f(~xi, ~θ)

∂θj

]
~θ=~θ0

then for 1 ≤ i ≤ n

yi − f 0
i =

p∑
j=1

β0
jZ

0
ij + εi, εi ∼ N (0, σ2)

fit a MLRM. Of course the solution β̂0 of this model will only deliver an approximate solution
of the NLRM, depending on the start value ~θ0.

Write above model in matrix notation as

~Y − ~f0 = ~Y0 = Z0
~β0 + ~ε

then an estimate for ~β0 is

β̂0 = (Z ′0Z0)−1Z0
~Y0 = (Z ′0Z0)−1Z0(~Y − ~f0).

Since
~θ ≈ ~β0 + ~θ0

therefore an improvement on the initial guess should be given by

θ̂1 = β̂0 + θ̂0
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2. We can continue from here and continue to improve θ̂1 using the same arguments as before.

In general
θ̂k+1 = θ̂k + β̂k = θ̂k + (Z ′kZk)

−1Zk(~Y − ~fk)

with

fki = f(~x− i, ~θk)

Zk
ij =

[
∂f(~xi, ~θ)

∂θj

]
~θ=~θk

3. The process ends, when a convergence criteria is met, like, no relevant changes in the estimates,
or the residual sum of squares is not significantly decreasing.

Example 8.3.
For the example we will be using data on the population of the United States (Source: Statistical
Abstract of the United States(1994), Bureau of the Census.)

year population year population
1790 3.929 1900 75.995
1800 5.308 1910 91.972
1810 7.240 1920 105.711
1820 9.638 1930 122.775
1830 12.866 1940 131.669
1840 17.069 1950 150.697
1850 23.192 1960 179.323
1860 31.443 1970 203.302
1870 39.818 1980 226.542
1880 50.156 1990 248.710
1890 62.948

A function for modeling population growth is

f(x) =
β1

1 + eβ2+β3x

f(x) is the population size at time x, β1 is the asymptote towards which the population grows,
β2 determines the population size at time 0 (given β1), and β3 measures the growth rate of the
population.
The function implies the following model equation for individual measurements in the population

Yi = f(xi) + εi εi ∼ N (0, σ2) 1 ≤ i ≤ n

R provides function nls for finding estimates for nonlinear regression models. It requires initial
values for the parameters, as we have seen that the iterative algorithm depends on it.
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The growth curve is S-shaped so one can guess from the scatterplot a value for β0
1 = 400, then for

x = 0 being year 1790

3.929 =
400

1 + eβ
0
2

⇔ β0
2 = ln

(
400

3.929
− 1

)
≈ 4.61

To find a good starting value β0
3 , one can use any other data point for example at time x = 1

5.308 =
400

1 + e4.61+β0
3∗1
⇔ β0

3 = ln

(
400

5.308
− 1

)
− 4.61 ≈ −0.30

The R code and output is:

beta10 <- 400

beta20 <- log(beta10/3.929 -1)

beta30 <- log(beta10/5.308 -1)-beta20

time<-(0:20) # otherwise another parameter has to be included to adjust for the year

model<-nls(pop~beta1/(1+exp(beta2+beta3*time)), start=list(beta1=beta10,beta2=beta20, beta3=beta30), trace=TRUE)

summary(model)

36737.47 : 400.000000 4.613209 -0.304318

436.1164 : 356.3585914 3.9175587 -0.2337715

368.0317 : 383.3007842 3.9802129 -0.2270488

356.4056 : 388.8121502 3.9903049 -0.2267113

356.4001 : 389.1630093 3.9903011 -0.2266178

356.4001 : 389.1642483 3.9903471 -0.2266204

356.4001 : 389.1656872 3.9903451 -0.2266198

Formula: pop ~ beta1/(1 + exp(beta2 + beta3 * time))

Parameters:

Estimate Std. Error t value Pr(>|t|)

beta1 389.16569 30.81201 12.63 2.2e-10 ***

beta2 3.99035 0.07032 56.74 < 2e-16 ***

beta3 -0.22662 0.01086 -20.87 4.6e-14 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.45 on 18 degrees of freedom

Number of iterations to convergence: 6

Achieved convergence tolerance: 1.016e-06

All three parameters are significantly different from 0.
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The fitted function and the residual plots show:

The fitted function seems to fit the data well, but the residual plot illustrates that the model is
missing some information. Another variable explaining the change in growth rate could help the
model. One possible variable could be an indicator of war activities or economic depression.
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