
3.5 Hypotheses Tests

After estimating the parameters of the model, we should check if the model is supported by the data,
and what can be learnt from the model. We will first focus on what can be learnt from the model
(assuming it represents the population well). The first questions to be answered will be if any of
the predictors has an effect on the mean response. If evidence shows this to be true, then we should
answer the follow-up question, which of the predictors has an effect.

3.5.1 Model Utility Test

To test if any of the predictors has an effect test the null hypothesis that all slopes are 0

H0 : β1 = β2 = · · · = βk = 0 versus Ha : at least on slope is not 0

The test is based on an ANOVA approach, where we analyse the total sum of squares in ~Y , and
find how much of the variation is due to the variables in the model and how much of the variation
remains unexplained.

� The Total Sum of Squares: Let Jn be the n× n matrix with all entries being 1.

SST =
n∑
i=1

(Yi − Ȳ )2 = ~Y ′~Y − 1

n
~Y ′Jn~Y = ~Y ′(In −

1

n
Jn)~Y

� The Residual Sum of Squares (see above):

SSRes = ~e ′~e =
n∑
i=1

(Yi − Ŷi)2 = ~Y ′(In −H)~Y = ~Y ′~Y − β̂′X ′~Y

� The Sum of Squares for Regression:

SSR =
n∑
i=1

(Ŷi − Ȳ )2 = β̂′X ′~Y − 1

n
~Y ′Jn~Y = ~Y ′(H − 1

n
Jn)~Y

Comments:

1. (In − 1
n
Jn)~Y = (In −H)~Y + (H − 1

n
Jn)~Y

2. (In −H)~Y and (H − 1
n
Jn)~Y are orthogonal ((In −H)(H − 1

n
Jn) = 0)

3. SST = SSR + SSRes (Pythagoras!)

4. If β1 = β2 = · · · = βk = 0, than E(SSR) = kσ2.

5. SSR/σ
2 ∼ χ2 with df = k

6. SSR and SSRes are independent.
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The F-score relating the Sum of Squares for Regression with the Sum of Squares for Residuals is
used for the test

F =
SSR/k

SSRes/(n− k − 1)
=

MSR
MSRes

Under the assumptions of the MLRM and if β1 = β2 = · · · = βk = 0 this F-score is F-distributed
with dfn = k and dfd = n− k − 1. (Why?)
The information for this test is usually summarized in an ANOVA table.

Source SS df MS F
Regression SSR k MSR MSR/MSRes
Residual SSRes n− k − 1 MSRes
Total SST n− 1

ANOVA F-test

1. Hypotheses:

H0 : β1 = β2 = · · · = βk = 0 versus Ha : at least on slope is not 0

Choose α.

2. Assumptions: Random samples, the MLRM is a proper description of the population, including
homoscedasticity and normality of the error.

3. Test statistic:

F0 =
SSR/k

SSRes/(n− k − 1)
=

MSR
MSRes

, dfn = k = p− 1, dfd = n− k − 1 = n− p

4. P-value: P (F > F0)

Continue Example. 3.1
Continue the example on the effect of age and weight on blood pressure and the analysis of the
model:

bp = β0 + β1(weight) + β2(age) + ε, ε ∼ N (0, σ2)

First find the ANOVA table. We already calculated SSRes = 5.78. It is

SST = ~y ′~y − 1

n
~y ′J6~y = (120, 141, 124, 126, 117, 129)


120
141
124
126
117
129

−
1

6
(757)2 = 354.83

Therefore SSR = SST − SSRes = 349.05. (Use that 1
n
~y′J6~y = (

∑n
i=1 y1)

2/n)

ANOVA table
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Source SS df MS F
Regression 349.05 2 174.525 90.58
Residual 5.78 3 1.927
Total 354.83 5

ANOVA F-test

1. Hypotheses:
H0 : β1 = β2 = 0 versus Ha : at least one slope is not 0

Choose α = 0.05.

2. Assumptions: Random samples, the MLRM is a proper description of the population, including
homoscedacity and normality of the error.

3. Test statistic: F0 = 90.58, dfn = 2, dfd = 3

4. P-value: P (F > F0), use F-distribution table from my website, since F0 is greater than the
0.005 critical value of the F distribution with dfn = 2 and dfd = 3, the P-value is smaller than
0.005.

5. Therefore the P-value is smaller than α, reject H0.

6. Context: At significance level of 5% the data provide sufficient evidence that at least one of
the slopes is different from zero, i.e. that at least one of age or weight has an effect on the
mean blood pressure.

From here arises the question which of the slopes is not zero.

The model utility test does not indicate that the model is a good description for the population, only
that if it is a good fit then at least on of the regressors has an effect on the mean response. A residual
analysis will help to judge if the model is appropriate for the population under consideration.

Coefficient of determination and adjusted coefficient of determination

� The coefficient of determination is defined as

R2 = 1− SSRes
SST

=
SSR
SST

Since SST measures the total variance in the response variable and SSRes measures the amount
of variance in the response not accounted for by the model, R2 gives the proportion of the
variation in the response explained by the model.

� The adjusted coefficient of determination, R2
adj, indicates how well the data is represented by

the estimated model. In comparison to the coefficient of determination, R2, it is adjusted for
the number of variables in the model. When adding additional variables to an existing model
the coefficient of determination will always increase, regardless of the relevance of the variable
for the response. The adjusted coefficient of determination includes an adjustment for the
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number of variables in the model to correct for this effect, but otherwise is to be interpreted in
the same way as R2.

R2
adj = 1− MSRes

MST

Continue Example. 3.1 The coefficient of determination for the blood pressure example is

R2
adj = 1− 5.78

354.83
= 0.98

98% of the sample variation in blood pressure can be explained by the changes in weight and age.
The adjusted coefficient of determination for the blood pressure example is

R2
adj = 1− 1.927

354.83/5
= 0.97

After penalizing for the extra variable in the model we rather claim that 97% of the sample variation
in blood pressure can be explained by the changes in weight and age.

The adjusted coefficient of determination is often used in the model building process.

3.5.2 Test for individual slopes

In order to find out if a variable xi has a significant linear effect on the mean response when accounting
for the other variables in the model, a test for H0 : βi = 0, 1 ≤ i ≤ k should be conducted.
The test can be based on the t-score standardizing β̂i:

Theorem 3.1.
In the MLRM

t =
β̂i − βi
se(β̂i)

=
β̂i − βi√
σ̂2Cii

,

where Cii is the ith diagonal entry in (X ′X)−1, is t-distributed with df = n− p.

Conclusion:
Let i ∈ {1, 2, . . . , k}. A (1− α)× 100% confidence interval for slope βi is given by

β̂i ± tn−pα/2

√
σ̂2Cii,

Test for individual slopes given the other regressors in the model:

1. Hypotheses:

Type Hypotheses
upper tail H0 : βi ≤ βi0 versus Ha : βi > βi0
lower tail H0 : βi ≥ βi0 versus Ha : βi < βi0
2 tail H0 : βi = βi0 versus Ha : βi 6= βi0
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Choose α.

2. Assumptions: Random samples, the MLRM is a proper description of the population, including
homoscedacity and normality of the error.

3. Test statistic:

t0 =
β̂i − βi0√
σ̂2Cii

, df = n− p

4. P-value:

Type P-value
upper tail P (t > t0)
lower tail P (t < t0)
2 tail 2P (t > |t0|)

Continue Example. 3.1
Test if the mean blood pressure increases with increasing weight(x1) within the proposed model

bp = β0 + β1(weight) + β2(age) + ε, ε ∼ N (0, σ2)

1. Hypotheses: H0 : β1 ≤ 0 versus Ha : β1 > 0 , choose α = 0.05.

2. Assumptions: Random samples, the MLRM is a proper description of the population, including
homoscedasticity and normality of the error.

3. Test statistic:

t0 =
2.38− 0√

1.927(0.018)
= 12.78, df = 3

4. P-value: P-value = P (t > 12.78), using the t-table with df = 3, find that the P-value< 0.005.

5. Decision: Reject H0.

6. Context: At significance level of 5% the data provide sufficient evidence that on average the
blood pressure increases with weight when correcting for age.

3.5.3 Test for a subset of slopes

In some applications it is of interest to test if in the presence of some (usually confounding) variables
at least one in a set of slopes for different variables is not zero.
Such a question would for example arise, when it is of interest to find the effect of the amount of
humour, violence, and drama on the popularity of a movie, after correcting for the effects of age and
sex (the confounding variables).

For the development of the test statistic the extra sum of squares principle is applied. It is based
on the comparison of the residual sum of squares for two models:

1. The full model: model which includes all variables.
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2. The reduced model: the model only including the variables to be corrected for.

Essentially it is tested if the inclusion of the extra variables results in a significant decrease in the
residual sum of squares.

1. The full model with k predictors, therefore p = k + 1 parameters (including the intercept)

~Y = X~β + ~ε

where ~Y and ~ε are n dimensional random vectors, the design matrix X ∈ Rn×p, and the
parameter vector ~β ∈ Rp.

To test for the effect of r < k predictors partition the design matrix and the parameter vector
such that

~Y = [X1|X2]

[
~β1
~β2

]
+ ~ε = X1

~β1 +X2
~β2 + ~ε

with partitioned design matrix where X1 ∈ Rn×(p−r) and X2 ∈ Rn×r, and partitioned parameter
vector where ~β1 ∈ R(p−r) and ~β2 ∈ Rr.

For the full model with β̂ = (X ′X)−1X ′~Y

SSRes(~β) = ~Y ′~Y − β̂′X ′~Y

with df = n− p.
We wish to test H0 : ~β2 = ~0.

2. The reduced model, where we assume ~β2 = ~0, with k − r predictors and k − r + 1 = p − r
parameters:

~Y = X1
~β1 + ~ε

and with β̂1 = (X ′1X1)
−1X ′1~Y

SSRes(~β1) = ~Y ′~Y − β̂′1X ′1~Y
with df = n− (p− r) = n− p+ r.

The difference in the Sum of Squares for Residuals when adding variables xk−r+1, . . . , xk to the model
with variables x1, . . . , xk−r is

SSRes(~β2|~β1) = SSRes(~β1)− SSRes(~β)

with df = n− p + r − (n− p) = r. These are called the extra sum of squares due to ~β2 (extra sum
of squares for regression, since the decrease in the residual sum of squares implies an increase by the
same amount in the regression sum of squares).

One can prove that SSRes(~β2|~β1) is independent of MSRes therefore

F =
SSRes(~β2|~β1)/r

MSRes

is F distributed with dfn = r and dfd = n− p.

ANOVA Extra Sum of Squares Test:
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1. Hypotheses:

H0 : βk−r+1 = · · · = βk = 0(~β2 = ~0) versus Ha : at least one slope is not 0

Choose α.

2. Assumptions: Random samples, the MLRM is a proper description of the population, including
homoscedasticity and normality of the error.

3. Test statistic:

F0 =
SSRes(~β2|~β1)/r

MSRes
, dfn = r, dfd = n− k − 1

4. P-value: P (F > F0)

Continue Example. 3.1
The model is

bp = β0 + β1(weight) + β2(age) + ε, ε ∼ N (0, σ2)

Use the extra sum of squares test to see if age has a significant effect on the mean blood pressure
when correcting for weight.

� The full model:
bp = β0 + β1(weight) + β2(age) + ε, ε ∼ N (0, σ2)

� The reduced model:
bp = β0 + β1(weight) + ε, ε ∼ N (0, σ2)

1. Hypotheses:
H0 : β2 = 0 versus Ha : β2 6= 0

Choose α.

2. Assumptions: Random samples, the MLRM is a proper description of the population, including
homoscedasticity and normality of the error.

3. Test statistic: r = 1. From previous work SSRes(~β) = 5.78 and MSRes = 1.927.

For finding SSRes(β1)

X1 =


1 69
1 83
1 77
1 75
1 71
1 73

 with X ′1X1 =

(
6 448

448 33574

)
and (X ′1X1)

−1 =

(
45.370 −0.605
−0.605 0.008

)

and

X ′1~y =

(
757

56705

)
gives SSRes(β1) = ~y ′~y − (X1~y)′(X ′1X1)

−1(X1~y) = 85.276

F0 =
(85.28− 5.78)/1

1.927
= 41.4, dfn = r = 1, dfd = n− p = 3
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4. P-value: 0.005 < P (F > F0) < 0.01 according to the F-distribution table.

5. Decision: Reject H0.

6. Context: At significance level of 5% the data provide sufficient evidence that age has a signifi-
cant effect on the blood pressure when correcting for weight.

R

reduced<-lm(BP~WEIGHT)

full<-lm(BP~WEIGHT+AGE)

anova(reduced, full)

3.6 Orthogonal Columns in the Design Matrix

Definition 3.1.
Matrices A ∈ Rn×m and B ∈ Rn×k are orthogonal, iff A′B = 0m×k.

Theorem 3.2.
If the design matric can be partitioned, so that

X = [X1|X2] with X ′1X2 = 0

then the least squares estimator for ~β = (~β1
′, ~β2

′)′ can be partitioned into β̂ = (β̂1
′, β̂2

′)′, so that

β̂1 = (X ′1X1)
−1X1

~Y , and β̂2 = (X ′2X2)
−1X2

~Y

Proof:
It is β̂ = (X ′X)−1X ′~Y . First find (X ′X)−1:

X ′X =

[
X ′1
X2

]
[X1|X2] =

[
X ′1X1 X ′1X2

X ′2X1 X ′2X2

]
=

[
X ′1X1 0(p−r)×r

0r×(p−r) X ′2X2

]
Then

A =

[
(X ′1X1)

−1 0(p−r)×r
0r×(p−r) (X ′2X2)

−1

]
is the inverse of X ′X, because

X ′XA =

 X ′1X1 0(p−r)×r

0r×(p−r) X ′2X2

 (X ′1X1)
−1 0(p−r)×r

0r×(p−r) (X ′2X2)
−1


=

 (X ′1X1)(X
′
1X1)

−1 + 0(p−r)×r0r×(p−r) (X ′1X1)0(p−r)×r + 0r×(p−r)(X
′
2X2)

−1

0r×(p−r)(X
′
1X1)

−1 + (X ′2X2)0r×(p−r) 0r×(p−r)0(p−r)×r + (X ′2X2)(X
′
2X2)

−1


=

 Ip−r 0(p−r)×r

0r×(p−r) Ir

 = Ip
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With this result now find β̂

β̂ = (X ′X)−1X ′~Y

=

 (X ′1X1)
−1 0(p−r)×r

0r×(p−r) (X ′2X2)
−1

 X ′1

X2

 ~Y
=

 (X ′1X1)
−1 0(p−r)×r

0r×(p−r) (X ′2X2)
−1

 X ′1~Y

X2
~Y


=

 (X ′1X1)
−1X1

~Y

(X ′2X2)
−1X ′2

~Y


=

 β̂1

β̂2


q.e.d.

Conclusion: Because of the theorem, we find in the case of orthogonal columns in the design matrix,
that the parameter vector can be partitioned, so that the parts are independent from each other,
and can be found independently. The extra sum of squares test for H0 : ~β2 = 0 is in the case of
orthogonal columns the same as the model utility test in the partitioned model ~Y = X2

~β2 + ~ε.

For the full model, it is now easy to prove that

SSR(~β) = SSR(~β1) + SSR(~β2)

I.e. the sum of squares for regression for the complete parameter vector equals the sum of squares for
regression for the partitioned parameter vector, and therefore according to the extra sum of squares
principle the two are independent, and tests for one partitioned vector is independent from the other.
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