
4.7 Confidence and Prediction Intervals

Instead of conducting tests we could find confidence intervals for a regression coefficient, or a set of
regression coefficient, or for the mean of the response given values for the regressors, and sometimes
we are interested in the range of possible values for the response given values for the regressors,
leading to prediction intervals.

4.7.1 Confidence Intervals for regression coefficients

We already proved that in the multiple linear regression model β̂ is multivariate normal with mean
~β and covariance matrix σ2(X ′X)−1, then is is also true that

Lemma 1.
For 0 ≤ i ≤ k β̂i is normally distributed with mean βi and variance σ

√
Cii, if Cii is the i−th diagonal

entry of (X ′X)−1.

Then confidence interval can be easily found as

Lemma 2.
For 0 ≤ i ≤ k a (1− α)× 100% confidence interval for βi is given by

β̂i ± tn−pα/2 σ̂
√
Cii

Continue Example. 3.1
To find a 95% confidence interval for the regression coefficient first find t40.025 = 2.776, then

2.38± 2.776(1.388)
√

0.018↔ 2.38± 0.517

The 95% confidence interval for β2 is [1.863, 2.897]. We are 95% confident that on average the blood
pressure increases between 1.86 and 2.90 for every extra kilogram in weight after correcting for age.

Joint confidence intervals for a set of regression coefficients.
Instead of calculating individual confidence intervals for a number of regression coefficients one can
find a joint confidence region for two or more regression coefficients at once. The result is stronger
since in this case the confidence level applies to all coefficients at once instead individually.

Lemma 3.
A (1 − α)% confidence region for the ~β1 ∈ Rr from the partitioned regression coefficient vector
~β = (~β1

′, ~β2
′)′ is given by

(β̂1 − ~β1)
′(X ′1X1)(β̂1 − ~β1)

r MSRes
≤ Fα(r, n− p)

Proof: The result is due to the fact that

(β̂1 − ~β1)
′(X ′1X1)(β̂1 − ~β1)

r MSRes

is F distributed with dfn = r and dfd = n− p.

For two dimensions this is an ellipse, but for three parameters it would be a 3-dimensional ellipsoid.
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Continue Example. 3.1 The following graph shows the 95% confidence region for ~β = (β1, β2)
′

from the model
bp = β0 + β1(weight) + β2(age) + ε, ε ∼ N (0, σ2)

The graph was created with R using the following commands.

library(ellipse)

BP.data<-read.table("BP.txt",header=T)

attach(BP.data)

fit<-lm(BP~AGE+WEIGHT)

plot(ellipse(fit, which = c(’AGE’, ’WEIGHT’), level = 0.95), type = ’l’)

points(fit$coefficients[’AGE’], fit$coefficients[’WEIGHT’])

4.7.2 Confidence interval for the mean response and prediction interval

To find a confidence interval for E(Y |~x0) the mean response given the regressors variables have values
~x0 observe that a point estimate is given by

Ŷ0 = ~x0
′β̂

It is unbiased and has variance σ2~x0
′(X ′X)−1~x0 (Proof!!). Because it is also normal a confidence

interval is derived as
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Lemma 4.
In the MLRM a (1− α)× 100% confidence interval for E(Y |~x0) is given by

Ŷ0 ± tn−pα/2 σ̂
√
~x0 ′(X ′X)−1~x0

Continue Example. 3.1
Find a 95% confidence interval for the mean blood pressure of people who are 35 years old and weigh
70kg, i.e. ~x0 = (1, 70, 35)′. t40.025 = 2.776, and

ŷ0 = (1, 70, 35)

 −66.13
2.38
0.44

 = 115.79 and

~x0
′(X ′X)−1~x0 = (1, 70, 35)

 129.777 −1.534 −0.452
−1.534 0.018 0.005
−0.452 0.005 0.002

 1
70
35

 = 0.495

then the confidence interval is given by

115.79± 2.776(1.388)
√

0.495↔ 115.79± 2.711↔ [113.08, 118.50]

We are 95% confident that the mean blood pressure of people who are 35 years old and weigh 70kg
falls between 113 mmHg and 118.5 mmHg.

To find a prediction interval for Y0 = Y |~x = ~x0 the distribution of

Ŷ0 − Y0

has to be considered. Compare to the approach taken for the SLRM. The mean of Ŷ0 − Y0 is 0, and
the variance is σ2 (1 + ~x0

′(X ′X)−1~x0). In addition it is normal as a linear combination of normal
random variables. Therefore:

Lemma 5.
A (1− α)× 100% prediction interval for Y0 = Y |~x = ~x0 is given by

Ŷ0 ± tn−pα/2 σ̂
√

1 + ~x0 ′(X ′X)−1~x0

Continue Example. 3.1
Find a 95% prediction interval for the blood pressure of people who are 35 years old and weigh 70
kg, i.e. ~x0 = (1, 70, 35)′. Using the results from above

115.79± 2.776(1.388)
√

1 + 0.495↔ 115.79± 4.711↔ [111.08, 120.50]

We predict that 95% of people who are 35 years old and weigh 70 kg mean have a blood pressure
between 111 and 120.5.

3



4.8 Standardized Regression

In some studies the strength of influence of different regressors on the mean response shall be com-
pared. Since the regressors are usually measured on different scales, this is impossible from the
MLRM.
In order to make coefficients comparable the standardized regression coefficients can be used.
The standardized regression coefficients are the least squares estimators in the model, fitting response
variable

Y ∗i =
Yi − Ȳ
sY

, 1 ≤ i ≤ n

with regressors

zij =
xij − x̄j
sj

, 1 ≤ i ≤ n, 1 ≤ j ≤ k

where s2j is the sample variance of xij, 1 ≤ i ≤ n and s2Y is the sample variance of Yi, 1 ≤ i ≤ n.
The model is

~Y ∗ = b0 + b1~z1 + b2~z2 + · · ·+ bk~zkε, ε ∼ N (0, σ2)

With b0 = 0, because it gives the mean of Y ∗, if all the z are 0. Since the mean of Y ∗ = 0, we get
b0 = 0.
The least squares estimates b̂ are

b̂ = (Z ′Z)−1Z ′Y ∗

Theorem 4.1.
The least squares estimate β̂ can be found from the standardized regression coefficients as

β̂j = b̂j
sY
sj

= b̂j

(
SST
SSjj

)2

, 1 ≤ j ≤ k

and

β̂0 = Ȳ −
k∑
i=1

b̂jx̄j

where sY and sj are the standard deviations of Y and xj, respectively, and

SSjj = SSxj =
n∑
i=1

(xij − x̄j)2 =
n∑
i=1

x2ij −
(
∑n

i=1 xij)
2

n
= ~xj

′~xj − ~xj ′Jn~xj

The least squares estimators for this model are called the standardized regression coefficients or beta
coefficients and are usually denoted by β. They measure the change in the response (measured in
standard deviations) for an increase in xj by one standard deviation when leaving the other regressors
unchanged. Because the slopes are now measuring the change in y based on standardized increases
in the regressors they are comparable and the larger absolute value of the standardized regression
coefficient the stronger its effect on the response.
b̂0 for this model is 0, because of the centering of both response and regressors.

Continue Example. 3.1
Using the following R-code the standardized regression coefficients are
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y<-BP.data$BP

y<-(y-mean(y))/sd(y)

(y<-t(t(y)))

x1<-BP.data$WEIGHT

x1<-(x1-mean(x1))/sd(x1)

(x1<-t(t(x1)))

x2<-BP.data$AGE

x2<-(x2-mean(x2))/sd(x2)

(x2<-t(t(x2)))

(X<-cbind(x1,x2))

(beta<-solve(t(X)%*%X)%*%t(X)%*%y)

The result

[,1]

[1,] 1.4029059

[2,] 0.7115687

So that b̂1 = 1.40, b̂2 = 0.71 and b̂0 = 0.
Interpretation: On average the blood pressure increases 1.4 standard deviations, when increasing the
weight by one standard deviation and keeping the age unchanged, and on average the blood pressure
increases 0.7 standard deviations, when increasing the age by one standard deviation and keeping
the weight unchanged. According to this data changes in weight have a stronger effect on the blood
pressure than changes in age.

4.9 Multicollinearity

When the columns of X are linearly dependent then X does not have full rank, therefore X ′X does
not have full rank and its inverse does not exist and the determinant is 0, which indicates that the
normal equation has infinite many solutions.
Should this occur in a practical situation, it indicates that at least one of the regressors is redundant
and should be removed from the model.

Multicollinearity refers to the problem when the columns are near-linear dependent, or the deter-
minant of X ′X is close to zero. The consequence is that the entries of the covariance matrix of β̂,
which is σ2(X ′X)−1 are large, resulting in wide confidence intervals for the regression coefficients,
indicating unprecise estimates for the regression coefficient resulting poor confidence intervals for the
mean response and prediction intervals.

A measure to detect multicollinearity is the determinant of the (X ′X)−1, or the diagonal elements of
the inverse of the correlation matrix, which is standardized and easier to judge than the covariance
matrix. If the diagonal entries, called variance inflation factors, exceed 10, they are considered
critical. They can also be calculated by

V IFj =
1

1−R2
j
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where R2
j is the coefficient of determination when regressing xj on the other regressor variables. This

definition makes intuitive sense, since V IFj is large if R2
j is close to one, which indicate that the

variance in xj can be explained by the other regressors.

Continue Example. For our example the inverse of the correlation matrix is(
2.26 1.69
1.69 2.26

)
Indicating that we do not have to be concerned about multicollinearity.

4.10 Wrong sign of regression coefficient estimates

Sometimes from theory the sign of a regressor can be deduced (think age and hight of children), but
a when estimating the slopes the “wrong” sign arises.
Possible reasons

1. The range of the regressor is too small (only include children of age 5 and 6)

2. Important regressors have not been included in the model (sex is omitted and only older girls
and younger boys are observed resulting in a negative slope)

3. multicollinearity (as discussed the standard errors are large and the estimates will not be
precise)

4. computational errors (well. . . )
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