
3 Multiple Linear Regression

3.1 The Model

”Essentially, all models are wrong, but some are useful.” Quote by George E.P. Box.
Models are supposed to be exact descriptions of the population, but that is assuming to much. But
we have to require that they capture the essence of the relationship between the variables under
investigation to be useful.

Definition 3.1.
A random variable Y fits a Multiple Linear Regression Model, iff there exist β0, β1, . . . , βk ∈ R so
that for all (x1, x2, . . . , xk) ∈ Rk

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε (3.1)

where ε ∼ N (0, σ2).

Corollary:
If Y fits a Multiple Linear Regression Model, then for a fixed value of ~x = (x1, x2, . . . , xk) ∈ Rk the
conditional expectation of Y given ~x equals

E(Y |~x) = E(β0 + β1x1 + β2x2 + · · ·+ βkxk + ε) = β0 + β1x1 + β2x2 + · · ·+ βkxk (3.2)

and the conditional variance of Y given ~x is

V ar(Y |~x) = V ar(β0 + β1x1 + β2x2 + · · ·+ βkxk + ε) = V ar(ε) = σ2 (3.3)

β0 . . . βk are called the regression coefficients, and they and σ2 are the parameters of the model.

This implies that the mean of Y depends on ~x in a linear fashion and the variance of Y is independent
from the value of ~x, which is called homoscedasticity.

This is a linear model, since the model equation is linear in the parameters β0, . . . , βk, also called
the regression coefficients.

3.2 Visualize

3.2.1 Without Interaction

Let limit ourselves for the moment to two predictor variables x1 and x2 a third variable is Y the
response variable.
In a model without error Y = β0 + β1x1 + β2x2.
Let Y = 5 + x1 + 2x2. The following diagram shows this function in a 3d-plot from R.
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The equation does not include an interaction term, which means that values of x2 do not have an
effect on the slope in the relationship between x1 and y, therefore the graph is a plane.

# R code for plotting the 3D plot

x1<-(-10:10)

x2<-(-10:10)

f <- function(x1,x2) { 5+x1 +2*x2}

y<-outer(x1,x2,f)

persp(x1, x2, y,

theta = 5, phi = 25,

expand = 0.5,

col = "lightblue",

ltheta = 120,

shade = 0.75,

ticktype = "detailed",

main = "without interaction"

)

3.2.2 With Interaction

When interaction is present this indicates that for different values of x2 the slope of the line relating
x1 and y can change, the graph is not a plane anymore. In the model this can be introduced by
including the product term for the interacting variables, x1 ∗ x2.
Let Y = 5 + x1 + 2x2 − 3 ∗ x1x2.
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Here you see that the result is no longer plane but a curved surface.

When we add an error to the model it explains that observations do not fall on the surface. The
surface then represents the mean of the response variable, y.

3.3 Estimation

To learn about the population (inferential statistics) we assume a random sample has been collected,
from which the goal is to infer about the population. In a first step the parameters of the model are
to be estimated, using point estimators and confidence intervals.
The data can be represented in an array like

y1 x11 x12 . . . x1k
y2 x21 x22 . . . x2k
...

...
yn xn1 xn2 . . . xnk

Using the data it will also be necessary to check if a multiple linear model is an appropriate description
for the population, and if it is an appropriate description, what estimates for the model parameters
can be found. If the MLR model is not a good fit, can we adjust the model to obtain a better fit?
Another goal will be to identify outliers and check if they are causing problems, or if the model
should be discarded entirely, because Y is independent from x1, . . . , xk.

Considering the above array, it seems to be reasonable to use matrices to represent the data.
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3.3.1 Matrix notation

If the MLR model fits the population then the observations in the sample can be modeled by inde-
pendent random variables which each fits the model equation, i.e. for 1 ≤ i ≤ n

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi, εi ∼ N (0, σ)

are independent random variables.
It is assumed that the different measurements are obtained independently from each other, which is
reflected by the assumption, that the Yi are independent, which is equivalent to request that the εi
are independent and identically distributed (iid).

Then with ~Y = (Y1, Y2, . . . , Yn)′, ~ε = (ε1, . . . , εn)′, ~β = (β0, β1, . . . , βk)
′, and

X =


1 x11 x12 . . . x1k
1 x21 x22 . . . x2k
...

...
1 xn1 xn2 . . . xnk


The model for n independent observations can be given in the following form:

~Y = X~β + ~ε, ~ε ∼ N (~0, σ2In)

For an explanation of the multivariate normal please see the review material ”On Random Vectors”.

3.4 Point Estimators

The least squares estimator is defined by the property that the total of the squared distances of the
observed values to the regression function is as small as possible.

Theorem 3.1.
In the case that X ′X is invertible the least squares estimator for the coefficient vector ~β, β̂, is given
by

β̂ = (X ′X)−1X ′~Y

Proof:
Since the regression function is f(~x) = ~x ′~β, the vector of fitted values is for a given parameter vector
~β obtained by X~β. (explain) Then for ~β ∈ Rk+1 the total of the squared distances of y1, y2, . . . , yn
to the regression function is

(~y −X~β)′(~y −X~β) = ~y ′~y − ~y ′X~β − (X~β)′~y + (X~β)′(X~β) = ~y ′~y − 2~β′X ′~y + ~β′X ′X~β

In order to find the least squares estimator β̂, which minimizes the expression above, find the partial
derivatives of the expression and set them to zero, then solve for ~β.
Use that for symmetric matrices A

∂A~x

∂~x
= A, and

∂~x ′A~x

∂~x
= 2A~x
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The linear system giving β̂:
−2X ′~y + 2X ′Xβ̂ = ~0k

which is equivalent to the normal equation

X ′Xβ̂ = X ′~y

In the case that X ′X is invertible
β̂ = (X ′X)−1X ′~y

This means given an observed response vector ~y, and a design matrix X of full rank, the least squares
estimate for ~β is given by β̂ = (X ′X)−1X ′~y (defined in the context of a specific sample).
Embedding this into Statistical Estimation Theory means, that the least squares estimator for the
MLRM is given as (defined as a random variable):

β̂ = (X ′X)−1X ′~Y

Which concludes the proof.

X ′X is invertible, iff the columns of X are linearly independent.
The ith column of X gives the values for the n individuals from the sample for the ith predictor
variable.
It follows that in the case of linearly dependent columns the least square estimator is not unique.
In the case the columns are linearly dependent one usually removes columns until the design matrix
has full rank, and the least squares estimator becomes unique.
This is also the reason it is disadvantageous if predictor variables have a high correlation, this results
in a small determinant of X ′X making it hard numerically to invert the matrix and calculating the
least squares estimator with high precisions.

Least squares estimator as projection

Geometrically regression is the orthogonal projection of the vector ~y ∈ Rn into the p dimensional
space spanned by the columns from X.

The projection ŷ is according to Linear Algebra

ŷ = X(X ′X)−1X ′~y = Xβ̂

The hat matrix is defined as
H = X(X ′X)−1X ′

because when applied to ~Y , it gets a hat.

The vector ŷ gives the fitted values for observed values ~y from the model estimates. The model for
the n observations are

~Y = X~β + ~ε

where ~ε has en expected value of ~0. The fitted value of ~y, ŷ is then

ŷ = Xβ̂

and as random variables:
Ŷ = Xβ̂
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Lemma 1.
In the MLRM the observed residual vector for a data vector is

~e = ~y − ŷ = y −Xβ̂ = y −X(X ′X)−1X ′~y = (In −X(X ′X)−1X ′)~y = (In −H)~y

Properties of β̂

Theorem 3.2.

1. β̂ is an unbiased estimator for ~β (E(β̂) = ~β).

2. The covariance matrix of β̂ is
Cov(β̂) = σ2(X ′X)−1

3. β̂ has a multivariate normal distribution.

Proof:

1.
E(β̂) = E ((X ′X)−1X ′Y )

= (X ′X)−1X ′E(Y )

= (X ′X)−1X ′X~β

= In~β = ~β

2.
Cov(β̂) = Cov ((X ′X)−1X ′Y )

= (X ′X)−1X ′Cov(Y )X((X ′X)−1)′

= (X ′X)−1X ′σ2InX((X ′X)−1)′

= σ2(X ′X)−1X ′X(X ′X)−1

= σ2(X ′X)−1

3. We have to show that every linear combination of components of β̂ is normally distributed.

A linear combinations of the components of β̂ can be written for a vector ~a ∈ Rk+1 as:

~a′β̂ = ~a′(X ′X)−1X ′~Y = (~a′(X ′X)−1X ′)~Y

which is a linear combination of components of ~Y . Since ~Y is multivariate normal, the linear
combination is by definition normally distributed, which concludes the proof.

β̂ has also ”minimal” variance. This property has to be defined, because β̂ is a random vector and
therefore has a p = k + 1 dimensional covariance matrix.

Theorem 3.3.
(Gauss-Markov Theorem) Let ψ = ~c ′~β, for ~c ∈ Rp, be a linear combination of the parameter vector ~β
in the MLR model, assume the design matrix X has full rank, then ψ̂ = ~c ′β̂ is an unbiased estimator
for ψ and has smallest variance in the class of linear unbiased estimators for ψ.
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Proof:(Compare Faraway(2002))
Using properties from the review material ”On Random Vectors” and the last theorem we get

E(ψ̂) = E(~c ′β̂) = ~c ′E(β̂) = ~c ′~β = ψ,

ψ̂ Therefore ψ̂ is an unbiased estimator for ψ.

In the next step we will now prove that ψ̂ has the smallest variance between all linear unbiased
estimators.

We start with some helpful observations: Suppose ~a ′~Y is some linear unbiased estimate of ~c ′~β so
that

E(~a ′~Y ) = ~c ′~β for all ~β ∈ Rp

~a ′X~β = ~c ′~β for all ~β ∈ Rp

from which follows that
~a ′X = ~c ′ (1).

(Why?)

Now let ~b = (X ′X)−1~c, then

~c = X ′X~b (2)

and
ψ̂ = ~c ′β̂ = ~b ′X ′Xβ̂ = ~b ′X ′X(X ′X)−1X ′~Y = ~b ′X ′~Y (3)

Now find the variance of ~a ′~Y and show that V ar(~a ′~Y )+ something positive = V ar(ψ̂)):

V ar(~a ′~Y ) = V ar(~a ′~Y − ~c ′β̂ + ~c ′β̂)

= V ar(~a ′~Y − ~c ′β̂) + V ar(~c ′β̂) + 2Cov(~a ′~Y − ~c ′β̂,~c ′β̂)

But using (3)

Cov(~a ′~Y − ~c ′β̂,~c ′β̂) = Cov(~a ′~Y −~b ′X ′~Y ,~b ′X ′~Y )

= Cov((~a ′ −~b ′X ′)~Y ,~b ′X ′~Y )

= (~a ′ −~b ′X ′)Cov(~Y )X~b

according to ”On Random Vectors” (Cov(~l ′~Y ,~h ′~Y ) = ~l ′Cov(~Y )~h).
Then

(~a ′ −~b ′X ′)Cov(~Y )X~b = (~a ′ −~b ′X ′)σ2InX~b

= σ2(~a ′X −~b ′X ′X)~b

= σ2(~c ′ − ~c ′)~b
= 0

using (1) and (2).
Therefore

V ar(~a ′~Y ) = V ar(~a ′~Y − ~c ′β̂) + V ar(~c ′β̂)

Since variances are always at least 0, this means that for all unbiased estimators ~a ′Y

V ar(~a ′~Y ) ≥ V ar(~c ′β̂)

Which concludes the proof.
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Example 3.1.

A small example relating age and weight to blood pressure:
The data

weight age blood pressure
69 50 120
83 20 141
77 20 124
75 30 126
71 30 117
73 50 129

The matrix scatterplot displays the relationship between all the variables of interest. This has limited
usefulness as discussed later.
The scatterplots do not display strong linear relationships, but we will never the less propose the
following model for blood pressure in the population:

bp = β0 + β1(weight) + β2(age) + ε, ε ∼ N (0, σ2)

First find the vector of parameter estimates for ~β = (β0, β1, β2)
′, based on the sample data above:

X =


1 69 50
1 83 20
1 77 20
1 75 30
1 71 30
1 73 50

 with X ′X =

 6 448 200
448 33574 14680
200 14680 7600

 and (X ′X)−1 =

 129.777 −1.534 −0.452
−1.534 0.018 0.005
−0.452 0.005 0.002



(Last matrix found with R) With

~y =


120
141
124
126
117
129

 , X ′~y =

 757
56705
25040

we get β̂ = (X ′X)−1X ′~y =

 −66.13
2.38
0.44

 and ŷ = Xβ̂ =


119.99
140.15
125.87
125.50
115.98
129.51


Comparing the vector of fitted values, ŷ, with the measurement vector, ~y, we can observe a close fit.
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For closer examination find the residual vector:

~e = ~y − ŷ =


0.005
0.853
−1.869

0.503
1.021
−0.513


The residuals giving the difference in blood pressure measured and predicted by the model, are quite
small, and seem to support the model.

Interpretation of the parameter estimates:

� The mean blood pressure for a person of age 0 and weight 0 is estimated to be -66.13. This is
not making sense! We would be extrapolating using this interpretation.

� The blood pressure increase in average by 2.38 mmHg for every extra year when the weight is
unchanged.

� The blood pressure increase in average by 0.44 mmHg for every extra kilogram when the age
is unchanged.

To be continued.

The estimator for the variance of the error in the MLR model, σ2, is again based on the residuals.

Definition 3.2.
Let p := k + 1 ( the number of regression parameters)

1. ~e = ~y − ŷ is the vector of observed residuals.

2. The residual sum of squares is
SSRes = ~e ′~e

3. The mean squares of error is

MSRes =
SSRes
n− p

Theorem 3.4.

1. SSRes = ~Y ′~Y − β̂X ′~Y = ~Y ′ [In −X(X ′X)−1X ′] ~Y

2. E(SSRes) = (n− p)σ2

3. SSRes/σ
2 is χ2 distributed with df = (n− p) and non centrality parameter λ = 0.

Proof:
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1.
SSRes = ~e ′~e

= (~Y − Ŷ )′(~Y − Ŷ )

= ~Y ′~Y − ~Y ′Xβ̂ − β̂ ′X ′~Y + β̂ ′X ′Xβ̂

= ~Y ′~Y − ~Y ′Xβ̂ − β̂ ′X ′~Y + ~Y ′X(X ′X)−1X ′Xβ̂

= ~Y ′~Y − ~Y ′Xβ̂ − β̂ ′X ′~Y + ~Y ′Xβ̂

= ~Y ′~Y − β̂ ′X ′~Y
which proves the first part. Continue from here

SSRes = ~Y ′~Y − β̂ ′X ′~Y
= ~Y ′~Y − ~Y X(X ′X)−1X ′~Y

= ~Y ′ [I −X(X ′X)−1X ′] ~Y

which concludes the second part of the equation.

2. To find the mean use E(~Y ′A~Y ) = tr(ACov(Y )) + E(~Y )′AE(~Y ) from ”On Random Vectors”.
Therefore we need the tr(I −X(X ′X)−1X ′):

tr([I −X(X ′X)−1X ′]) = tr(I)− tr(X(X ′X)−1X ′)
= n− tr((X ′X)−1X ′X)
= n− tr(Ip) = n− p

Using that tr(AB) = tr(BA), if the matrices permit the multiplications. Then

E(SSRes) = E(~Y ′ [I −X(X ′X)−1X ′] ~Y )

= tr([I −X(X ′X)−1X ′]σ2I) + E(~Y )′ [I −X(X ′X)−1X ′]E(~Y )

= σ2(n− p) + ~β′X ′ [I −X(X ′X)−1X ′]X~β

= σ2(n− p) + ~β′X ′X~β − ~β′X ′X(X ′X)−1X ′X~β

= σ2(n− p) + ~β′X ′X~β − ~β′X ′X~β
= σ2(n− p)

3. For this proof we need the following:

� A matrix A is called idempotent if A = AA.

If A is a symmetric idempotent matrix than I − A is symmetric idempotent.

If A is idempotent, than rank(A) = trace(A).

� (From appendix C.2.4 from the text book)

If ~Y ∼ N (~µ, V ), and U = ~Y ′A~Y and either AV or V A is idempotent of rank p, than
U ∼ χ2, with df = p and non-centrality parameter λ = ~µ ′A~µ.

First show that X(X ′X)−1X ′ is idempotent:

(X(X ′X)−1X ′)(X(X ′X)−1X ′) = X(X ′X)−1X ′X(X ′X)−1X ′

= X(X ′X)−1IX ′

= X(X ′X)−1X ′
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Since X(X ′X)−1X ′ is idempotent, so is I −X(X ′X)−1X ′. Using that with ~Z = 1
σ
~Y ,

Cov(Z) =
1

σ2
Cov(~Y ) =

1

σ2
σ2I = I

and
rank(I −X(X ′X)−1X ′) = trace(I −X(X ′X)−1X ′X) = n− p

therefore applying the second bullet we get that

~Z ′(I −X(X ′X)−1X ′)~Z ∼ χ2 with df = rank(I −X(X ′X)−1X ′) = n− p
1
σ2
~Y ′(I −X(X ′X)−1X ′)~Y ∼ χ2 with df = rank(I −X(X ′X)−1X ′) = n− p

1
σ2SSRes ∼ χ2 with df = rank(I −X(X ′X)−1X ′) = n− p

which concludes the proof.

Conclusion: σ̂2 = MSRes is an unbiased estimator for σ2.

Continue Example. 3.1:

SSRes = ~e ′~e = (0.005, 0.853,−1.869, 0.503, 1.021,−0.513)


0.005
0.853
−1.869

0.503
1.021
−0.513

 = 5.78

The estimated variance σ̂2 = 5.78/(6− 3) = 1.93, and therefore σ̂ =
√

1.93 = 1.39.

We estimate that the measurements vary with a standard deviation of 1.39 around the regression
function.

3.5 Scatter Plots in Multiple Linear Regression

Two dimensional scatter plots as we have used in the blood pressure example are of limited usefulness.
In the example we showed
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The bottom left plot seems to indicate a positive association between weight and blood pressure, the
bottom middle shows no apparent association between age and blood pressure, and the middle left
plot shows a negative association between age and weight.
The problem arising is that when plotting the association between two variables we are ignoring the
third, which can hide a more dimensional association (think of the 3D-plots)
But if we would observe a strong association between two predictors this can point to a collinearity
issue, which could result in a close to singular design matrix, causing high standard errors in the
estimation.
Even if there would be a perfect linear relationship between x1, x2 and y this would not necessarily
show in the plot.

Example 3.2.

V1 V2
1 1
2 2
3 7
4 4
5 4
6 6
7 3
8 1
9 9

10 0

and y = −7 + 5V 1− 5V 2

This is an example with only two regressors and a perfect linear association (no error, no interaction).
One can imagine how this becomes even less clear in cases with more regressors, including interaction
and error.
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