On Linear Algebra

1. For matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times k}$

$$(AB)' = B'A'$$

- 2. $A \in \mathbb{R}^{k \times k}$ is called symmetric if A' = A.
- 3. $A \in \mathbb{R}^{k \times k}$ is called idempotent if AA = A.
- 4. If $A \in \mathbb{R}^{k \times k}$ is idempotent and symmetric then I A is also idempotent and symmetric.
- 5. For $A \in \mathbb{R}^{k \times k}$ the trace of A, tr(A), is defined as

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

(a) For matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$

$$tr(AB) = tr(BA)$$

(b) For matrices $A, B \in \mathbb{R}^{k \times k}$ and $c, d \in \mathbb{R}$

$$tr(cA + dB) = c \ tr(A) + d \ tr(B)$$

- 6. If $A \in \mathbb{R}^{k \times k}$ idempotent, then tr(A) = rk(A).
- 7. $A \in \mathbb{R}^{k \times k}$ is invertible, if it has rank k.
- 8. If A is invertible then its inverse, A^{-1} , exists with $AA^{-1} = A^{-1}A = I_k$.
- 9. If A has full rank and $\vec{b} \in \mathbb{R}^k$ then the system of linear equations, $A\vec{x} = \vec{b}$, has solution $\vec{x} = A^{-1}\vec{b}$.
- 10. $A \in \mathbb{R}^{k \times k}$ is called orthonormal if A'A = I. Which means $A^{-1} = A'$.