
Introduction
Outline

1. Website (https://academic.macewan.ca/burok/index.html)

2. Office hours (online, in person)

3. Homework/Labwork – Crowdmark (practice assignment 0)

4. email for contacting me outside of lecture, lab, and office hours

5. text book (recommended): Introduction to Linear Regression Analysis, Montgomery, Peck,
Vining (any edition), is available online in the MacEwan library

6. major project in the lab

7. Install R and RStudio on your computer

8. Weekly email (as long as we are online)

Prerequisites

� Assumption, you can interpret statistics:

– What is inferential statistics?

– What does it mean to be 95% confident?

– What is measured by the P-value?

– Rational in testing

– Why can we not avoid allowing errors in inferential statistics?

– Why do we need the assumption to be met?

– How to conduct a test? (6 steps)

On my website for STAT 252 there are detailed notes on these concepts ((Introduction and
Review), which will probably beneficial to review

� Assumption, you remember the basics in probability theory

– Normal distribution

– Conditional distribution

� Assumption, you know the basics from Linear Algebra

– Matrix Algebra (addition, scalar multiplication, multiplication, etc.)

– Solving a system of linear equations

– Properties of the inverse of a matrix
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� In this course we add to your statistical “toolbox”.

Regression is one of the most common and versatile tools in applied statistics.

After you have completed the course you will know how to identify scenarios when regression
can be used, how to check model assumptions, and address possible violations. You will have
experienced the application of regression to a larger scientific question, and how to build a
model fitting data of your choice.

What are your expectations?

Course contents

� The model

� How are estimators chosen? Tests

� Finding and dealing with model inadequacies

� More models

� Regression analysis of categorical data

� Using R in the process (in class and in the lab).

1 Introduction

1.1 Basics

� Population versus sample

� Estimation (point, interval)

� Testing

� Linear Algebra

1.2 Models

“Essentially, all models are wrong, but some are useful. ” (George Box, 1978)

In statistics we use models to describe the population and then we use sample data, to estimate
parameters in the model, and conduct tests relating to these parameters.
Regression is a statistical tool for analyzing models which relate response variables (variables we
want to learn about), and independent(explanatory) variables, these might or might not be related
to the response variable.
Regression is one of the most commonly used tools in applied statistics and is applied in many diverse
fields like psychology, engineering, management, biology, medicine, etc.
Examples:
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� house prices in dependency on size, location number of bed rooms, lot size, etc.

� time to delivery in dependency on distance, number of left turns, number of traffic lights

� decrease in blood pressure in dependency on medication, dose of medication, initial blood
pressure, diabetes (yes,no), etc.

� degree of procrastination in dependency on sleep quality, emotional well-being, social well being,
and psychological well being, and number of assignments

� environmental impact/cost of anesthetic depending on agent(gas) used, Fresh Gas Flow, and
duration of surgery

1.3 An applied take

In this section the main concepts are introduced, which will later discussed in more general scenarios.
The simple linear regression model

y = β0 + β1x+ ε

In which:

� y is the response variable

� x is the only explanatory variable

� β0 is the intercept of the population regression line

� β1 is the slope if the population regression line

� ε is the error, explaining the deviation of the measurements in the population from the regres-
sion line

When using inferential statistics ε is assumed to be normally distributed with mean zero and standard
deviation σ.

Example 1.1.
From Ott, Longnecker: An Introduction to Statistical Methods and Data Analysis (1977)

A food processor conducted an experiment to study the relationship between concentration of pectin
on the firmness of canned sweet potatoes. For each pectin concentration of 0%, 1.5%, and 3% they
chose randomly 2 cans which after 30 days of canning at 25 degrees the firmness of the potatoes were
measured.
The measurements are in the following table: pectin firmness

0 50.5
0 46.8

1.5 62.3
1.5 67.7
3.0 80.1
3.0 79.2
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A scatter plot of the data shows how changes in the pectin concentration affect the firmness of the
sweet potatoes.

R-code for creating the scatterplot:

pectin<-c(0,0,1.5,1.5,3,3)

firmness<-c(50.5,46.8,62.3,67.7,80.1,79.2)

(Pectin.data<-data.frame(pectin,firmness))

with(Pectin.data,plot(pectin,firmness, main="Pectin Concentration versus Firmness"))

Let Y be the firmness, and x the pectin concentration then motivated by the diagram we propose a
model for the population which claims that Y is a linear function in x + error:

Y = β0 + β1x+ ε (1.1)

with the error, ε, being normally distributed with mean 0 and standard deviation σ, regardless of
the value of x.
Later we will see how we can use the data to gain insight into the population by estimating the
parameters in the equation, and conducting tests.

Definition 1.1.
Equation (1.1) together with the assumption that the error is normally distributed with mean 0 and
common variance σ2 defines the Simple Linear Regression Model.

Conclusion:
The model implies that for values of x the conditional expectation of Y given x is

µY |x = E(Y |x) = E(β0 + β1x+ ε) = E(β0 + β1x) + E(ε) = β0 + β1x (1.2)
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since β0 + β1x is deterministic and E(ε) = 0.
The conditional variance is

V ar(Y |x) = V ar(β0 + β1x+ ε) = V ar(ε) = σ2 (1.3)

Equations (1.2) and (1.3) indicate that a line describes the mean of the response variable, Y , in
dependency on the regressor, and that the measurements are scattered around the line according to
a normal distribution with the same variance for all x.

Procedure:
After proposing a model, the model parameters will estimated using sample data, usually followed
by statistical tests regarding the values of the parameters or usefulness of the model. The model
assumptions have to hold and will have to be confirmed for the tests to be valid. If violated the
model must be modified, and a new analysis started, until a satisfactory model has been found.
The final model can then be interpreted to give insight into the population, and if fitting well enough
be used for predicting future measurements.

Continue Example 2.2.1. For illustrating the estimation process use the example above. The
R-code for obtaining and printing the estimates for the parameters of the simple linear regression
model proposed are:

model<-lm(firmness~pectin, data=Pectin.data)

model

producing the following output:
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Call:

lm(formula = firmness ~ pectin, data = Pectin.data)

Coefficients:

(Intercept) pectin

48.93 10.33

Indicating that the “best” estimate for the intercept β0 is β̂0 = 48.93, saying that the estimated
mean firmness after 30 days when using 0 pectin is 48.93 MPa, and the “best” estimate for the slope
β1 is β̂1 = 10.33 indicating, that for every extra percent of pectin added to the potatoes the firmness
increases in average by 10.33 MPa.
The estimated regression line is ŷ = 48.93 + 10.33x

At this point an analysis of model fit should follow. How this is done will be introduced in the
following chapters.
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2 Simple Linear Regression

2.1 The model

Definition 2.1.
A random variable Y fits a Simple Linear Regression Model, iff there exist β0, β1 ∈ R so that for all
x ∈ R

Y = β0 + β1x+ ε (2.1)

where ε ∼ N (0, σ2).

Corollary:
If Y fits a Simple Linear Regression Model, then for a fixed value of x ∈ R the conditional expectation
of Y given x equals

E(Y |x) = E(β0 + β1x+ ε) = β0 + β1x (2.2)

and the conditional variance of Y given x is

V ar(Y |x) = V ar(β0 + β1x+ ε) = V ar(ε) = σ2 (2.3)

β0 and β1 are called the regression coefficients, and are the parameters of the model.

This implies that the mean of Y depends on x in a linear fashion and the variance of Y is independent
from the value of x, which is called homoscedasticity.

2.2 Estimation

This section demonstrates how sample data, (x1, y1), (x2, y2), . . . , (xn, yn) can be used to estimate
the values of β0 and β1 of the simple linear regression model, and properties of the estimators are
discussed.
In this context we view the sample data y1, . . . , yn as n measurements from the population described
by the linear regression model, or as n realizations of random variables Y1, . . . , Yn fitting the linear
regression model.

The least-squares estimators for the regression coefficients will be introduced and only at a later time
consider Maximum Likelihood estimators.

2.2.1 Point estimators

The least-squares estimators have the property that the total squared vertical distances of the mea-
surements to the least squares line are minimal, i.e. the function

S(β0, β1) =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

(yi − (β0 + β1xi))
2 (2.4)

assumes its minimum for the least-square estimates β̂0 and β̂1.
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Theorem 2.1.
The least square estimators for the simple linear regression model are

β̂1 =
SSxY
SSxx

, and β̂0 = Ȳ − β̂1x̄ (2.5)

with

SSxx =

(
n∑
i=1

x2
i −

(
∑n

i=1 xi)
2

n

)
, and SSxY =

(
n∑
i=1

xiYi −
(
∑n

i=1 xi) (
∑n

i=1 Yi)

n

)
Proof:

Assume data points (x1, y1), (x2, y2), . . . , (xn, yn).
The least square estimators are the solution of the system of equations obtained by putting the
partial derivatives of S to zero:

∂S

∂β0

(β̂0, β̂1) = −2
n∑
i=1

(yi − β̂0 − β̂1xi) = 0

and
∂S

∂β1

(β̂0, β̂1) = −2
n∑
i=1

(yi − β̂0 − β̂1xi)xi = 0

Simplification of the first equation:

0 = −2
n∑
i=1

(yi − β̂0 − β̂1xi)

=
n∑
i=1

yi − nβ̂0 − β̂1

n∑
i=1

xi
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which is equivalent to:

β̂0 =

(
n∑
i=1

yi − β̂1

n∑
i=1

xi

)
/n (2.6)

which gives β̂0 = ȳ − β̂1x̄, as claimed.
Simplification of the second equation:

0 =
n∑
i=1

(yi − β̂0 − β̂1xi)xi

=
n∑
i=1

yixi − β̂0

n∑
i=1

xi − β̂1

n∑
i=1

x2
i

(2.7)

Plucking (2.6) into (2.7) gives

0 =
n∑
i=1

yixi −
∑n

i=1 yi − β̂1

∑n
i=1 xi

n

n∑
i=1

xi − β̂1

n∑
i=1

x2
i

=
n∑
i=1

yixi −
(
∑n

i=1 yi)(
∑n

i=1 xi)

n
+ β̂1

(
∑n

i=1 xi)
2

n
− β̂1

n∑
i=1

x2
i

⇔

β̂1

(
n∑
i=1

x2
i −

(
∑n

i=1 xi)
2

n

)
= SSxy

⇔
β̂1 =

SSxy
SSxx

Therefore for given data points the least square solution is β̂1 = SSxY

SSxx
, β̂0 = Ȳ − β̂1x̄, providing the

estimators as claimed above.

β̂0 and β̂1 are called the least-squares estimators of β0 and β1 and

ŷ = β̂0 + β̂1x (2.8)

is called the least-squares regression line.

Continue Example (Pectin-firmness data)
To calculate the least squares line describing the relationship between firmness and pectin concen-
tration first find

n∑
i=1

xi = 9,
n∑
i=1

yi = 386.6,
n∑
i=1

x2
i = 22.5,

n∑
i=1

y2
i = 25, 893.72,

n∑
i=1

xiyi = 672.9

From these:
SSxx = 9, SSyy = 983.79, SSxy = 93

which gives
β̂1 = 93/9 = 10.333, and, β̂0 = 386.6/6− 10.333(9/6) = 48.93
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The least squares regression line is
ŷ = 48.93 + 10.333x

With the interpretation, that when the pectin concentration is 0% then the mean firmness of the
potatoes is estimated to be 48.93, and for every extra percent of pectin the firmness increases on
average by 10.333.

#R code for obtaining estimators and creating plot

pectin<-c(0,0,1.5,1.5,3,3)

firmness<-c(50.5,46.8,62.3, 67.7, 80.1, 79.2)

Pectin.data<-data.frame(pectin,firmness)

model<-lm(firmness~pectin, data=Pectin.data)

summary(model)

with(Pectin.data,plot(pectin,firmness, main="Pectin Concentration versus Firmness"))

abline(model)

Properties of the Least Square Estimators

� The estimators are linear in the random variables Yi, 1 ≤ i ≤ n:

β̂1 =
n∑
i=1

ciYi, with ci =
xi − x̄
SSxx

, 1 ≤ i ≤ n,
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and

β̂0 =
n∑
i=1

diYi, with di = 1/n− cix̄, 1 ≤ i ≤ n,

� β̂0 and β̂1 are unbiased estimators for β0 and β1, if the model assumptions are met.

Proof:

E(β̂1) = E(
n∑
i=1

ciYi) =
n∑
i=1

ciE(Yi) =
n∑
i=1

ci(β0 + β1xi) = β0

n∑
i=1

ci + β1

n∑
i=1

cixi = β1

since
∑n

i=1 ci = 0 and
∑n

i=1 cixi = 1 (Proof!!!).

Therefore β̂1 is an unbiased estimator for β1.

Similar

E(β̂0) = β0

n∑
i=1

di + β1

n∑
i=1

dixi = β0

since
∑n

i=1 di = 1 and
∑n

i=1 dixi = 0 (Proof!!!).

�

Var(β̂1) =
σ2

SSxx
, and Var(β̂0) = σ2

(
1

n
+

x̄2

SSxx

)
Proof:

Var(β̂1) = Var

(
n∑
i=1

ciYi

)
=

n∑
i=1

c2
iVar(Yi) =

n∑
i=1

c2
iσ

2 =
σ2

SS2
xx

n∑
i=1

(xi − x̄)2 =
σ2

SSxx

and

Var(β̂0) = Var

(
n∑
i=1

diYi

)
=

n∑
i=1

d2
iVar(Yi) = σ2

n∑
i=1

(
1

n
− cix̄

)
= σ2

(
1

n
+

1

n
x̄

n∑
i=1

ci + x̄2

n∑
i=1

c2
i

)
= σ2

(
1

n
+

x̄2

SSxx

)

� Given the last property the standard errors of β̂0 and β̂1 are, respectively,

SE(β̂1) =
σ√
SSxx

, and SE(β̂0) = σ

√(
1

n
+

x̄2

SSxx

)

� Gauss-Markov-Theorem (Proof later with multiple regression):
β̂0 and β̂1 are the best linear unbiased estimators (BLUEs) for β0 and β1 in the linear regression
model, when Y1, . . . , Yn are uncorrelated.

Where “best” means, they are the estimators with the smallest possible variance. Why is this
a good thing?
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Definition 2.2.
For sample data (x1, y1), . . . , (xn, yn) the ith residual is defined as

ε̂i = ei = yi − ŷi = yi − (β̂0 + β̂1xi)

Properties of the residuals:

�

n∑
i=1

ei = 0

�

n∑
i=1

yi =
n∑
i=1

ŷi

� The centroid (x̄, ȳ) falls onto the least squares regression line ȳ = β̂0 + β̂1x̄

�

n∑
i=1

xiei = 0

�

n∑
i=1

ŷiei = 0

The regression model includes one more parameter, the common variance σ2

Theorem 2.2.
Let SSRes =

∑n
i=1 e

2
i then

σ̂2 =
SSRes
n− 2

with SSRes =
∑n

i=1 e
2
i is an unbiased estimator for σ2.

Proof:
Later with Linear Algebra for Multiple Linear Regression.

Comment:

SSRes = SSyy − β̂1SSxy (2.9)

(to see that this is true use ŷi = β̂0 + β̂1xi)

� MSRes = σ̂2 is also the called the Residual Mean square.

� σ̂ is called the (estimated) standard error of regression, and

� the (estimated) standard errors for β̂0 and β̂1 are

se(β̂1) =
σ̂√
SSxx

, and se(β̂0) = σ̂

√(
1

n
+

x̄2

SSxx

)
Observe the difference between SE(β̂0) and se(β̂0).
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Continue Example 2.2.1.(Pectin-firmness data)
We already found SSyy = 983.79, SSxy = 93, β̂1 = 10.333, and, β̂0 = 48.93 Therefore

σ̂2 =
SSRes
n− 2

=
SSyy − β̂1SSxy

n− 2
=

983.79− (10.333)93

6− 2
= 5.71

and σ̂ = 2.39. We estimate that the measurement are spread with a standard deviation of 2.39
around the least squares regression line.

# R code producing output including the result

pectin<-c(0,0,1.5,1.5,3,3)

firmness<-c(50.5,46.8,62.3, 67.7, 80.1, 79.2)

Pectin.data<-data.frame(pectin,firmness)

model<-lm(firmness~pectin, data=Pectin.data)

summary(model)

As usual point estimators have the critical shortcoming, that the probability to give the true value
is 0.
Therefore we usually request interval estimates or confidence intervals.
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2.2.2 Confidence intervals for estimating slope, intercept, and variance

Read “On Distributions” before continuing

The confidence intervals are based on the distribution of a standardized scores for the least-square
estimates

Theorem 2.3.

t =
β̂1 − β1

σ̂/
√
SSxx

=
β̂1 − β1

se(β̂1)
and t =

β̂0 − β0

σ̂

√(
1
n

+ x̄2

SSxx

) =
β̂0 − β0

se(β̂0)

are t-distributed with df = n− 2.

Proof idea:
Y1, . . . , Yn are according to definition normally distributed, and β̂0 and β̂1 are linear combinations in
the Yi, therefore β̂0 and β̂1 normally distributed with means β0 and β1, respectively, and variances

σ2

SSxx
, σ2

(
1

n
+

x̄2

SSxx

)
respectively.
Then

Z =
β̂1 − β1

σ/
√
SSxx

and Z =
β̂0 − β0

σ

√(
1
n

+ x̄2

SSxx

)
are standard normally distributed.
Also it can be shown that V = SSRes/σ

2 ∼ χ2(n− 2).
One can prove that

Z =
β̂1 − β1

σ/
√
SSxx

and V =
SSRes
σ2

and

Z =
β̂0 − β0

σ

√(
1
n

+ x̄2

SSxx

) and V =
SSRes
σ2

are independent, which we will do in the more general context of multiple regression.
Then

t =
β̂1 − β1

σ/
√
SSxx

×

√
σ2(n− 2)

SSRes
=

β̂1 − β1

σ̂/
√
SSxx

is t-distributed with df = n− 2,
and

t =
β̂0 − β0

σ

√(
1
n

+ x̄2

SSxx

) ×
√
σ2(n− 2)

SSRes
=

β̂0 − β0

σ̂

√(
1
n

+ x̄2

SSxx

)
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is t-distributed with df = n− 2.

Corollary:
Let tdfp be the p critical value of a t-distribution with df degrees of freedom, then according to theorem
2.3:

(a) A (1− α)× 100% confidence interval for β0 is given by

β̂0 ± tn−2
α/2 se(β̂0)

(b) A (1− α)× 100% confidence interval for β1 is given by

β̂1 ± tn−2
α/2 se(β̂1)

Continue Example 2.2.1.(Pectin-firmness data)
95% confidence intervals require the 0.025 critical value of the t-distribution with 4 degrees of freedom,
which is t∗ = 2.776. The standard errors are

se(β̂0) = 2.39

√(
1

6
+

1.52

9

)
= 1.5409 se(β̂1) =

2.39√
9

= 0.7957

Therefore 95% confidence intervals for intercept and slope are given by

50.43± 2.776(1.5409) and 10.33± 2.776(0.7957)

We are 95% confident that the true intercept falls between 44.7 and 53.2, and that the true slope
falls between 8.12 and 12.54.

Interpretation:
We are 95% confident that the mean firmness falls between 44.7 and 53.2 when using no pectin, and
that the firmness increases between 8.1 and 12.5, when increasing pectin by 1%.

# R code producing confidence intervals for parameters

pectin<-c(0,0,1.5,1.5,3,3)

firmness<-c(50.5,46.8,62.3, 67.7, 80.1, 79.2)

Pectin.data<-data.frame(pectin,firmness)

model<-lm(firmness~pectin, data=Pectin.data)

confint(model)

Theorem 2.4.
If the model assumptions are met, then

χ2 =
(n− 2)MSRes

σ2

is χ2 distributed with df = n− 2

15



Proof:

It is
(n− 2)MSRes

σ2
=
SSRes
σ2

which is (see prove above) χ2 distributed with df = n− 2, which proves the claim.

Corollary:
Let χkp be the p critical value of a χ2-distribution with df = k, then[

(n− 2)MSRes

χn−2
α/2

,
(n− 2)MSRes

χn−2
1−α/2

]

is a (1− α)× 100% confidence interval for σ2.
Proof:
According to theorem 2.4

P

(
χn−2

1−α/2 ≤
(n− 2)MSRes

σ2
≤ χn−2

α/2

)
= 1− α

which is equivalent to

P

(
1

χn−2
1−α/2

≥ σ2

(n− 2)MSRes
≥ 1

χn−2
α/2

)
= 1− α

which is equivalent to

P

(
(n− 2)MSRes

χn−2
1−α/2

≥ σ2 ≥ (n− 2)MSRes

χn−2
α/2

)
= 1− α

which concludes the proof.

Continue Example 2.2.1.(Pectin-firmness data)

A 95% confidence interval for σ2 is given by[
4(5.71)

11.143
,

4(5.71)

0.484

]
←→ [2.05 , 47.19]

which gives a 95% confidence interval for σ: [
√

2.05,
√

47.19] = [1.43 , 6.87].

# R code for calculating confidence interval for the error variance

# lower bound:

sum(model$residuals^2)/qchisq(0.975,df=4)

# upper_bound

sum(model$residuals^2)/qchisq(0.025,df=4)
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2.3 Tests concerning the parameters

Also based on theorem 2.3 statistical tests for the model parameters can be derived. The test of
H0 : β1 = 0 versus Ha : β1 6= 0 is of particular importance, is called model utility test, since with
this test we can show the usefulness of the model. If β1 = 0 x is not linearly related with Y and the
model is not of further interest.

t-test for the slope in the simple linear regression model

1. Hypotheses: Parameter of interest β1.

test type hypotheses
upper tail H0 : β1 ≤ β10 vs. Ha : β1 > β10

lower tail H0 : β1 ≥ β10 vs. Ha : β1 < β10

two tail H0 : β1 = β10 vs. Ha : β1 6= β10

Choose α.

2. Assumptions: Random sample, regression model is appropriate

3. Test statistic:

t0 =
β̂1 − β10

se(β̂1)
, df = n− 2

4. P-value:

test type P-value
upper tail P (t > t0)
lower tail P (t < t0)
two tail 2P (t > abs(t0))

5. Decision: If P − value < α reject H0, otherwise do not reject H0.

6. Context:

Continue Example 2.2.1(Pectin-firmness data)
Model utility test for the simple linear regression model relating the firmness of sweet potatoes with
the percentage of pectin added.

1. Hypotheses: Parameter of interest β1. H0 : β1 = 0 vs. Ha : β1 6= 0, β10 = 0. α = 0.05.

2. Assumptions: Random sample (the description suggests it is a random sample), regression
model is appropriate, for checking this assumption we will learn how to do a residual analysis.

3. Test statistic:

t0 =
10.33− 0

0.7957
= 12.99, df = 4

4. P-value: This is a two-tailed test, therefore P-value= 2P (t > abs(t0)), or 2 times the area to
the right of t0 = 12.99. According to the t-distribution table, the area is smaller than 0.005.

P − value < 2(0.005) = 0.01.

5. Decision: P − value < 0.01 < 0.05, reject H0.
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6. Context: At significance level of 5% the data provide sufficient evidence that the mean firmness
of the sweet potatoes depends on the percentage of pectin used in the canning process.

\begin{verbatim}

# R code producing test results, but you have to interpret the output!

pectin<-c(0,0,1.5,1.5,3,3)

firmness<-c(50.5,46.8,62.3, 67.7, 80.1, 79.2)

Pectin.data<-data.frame(pectin,firmness)

model<-lm(firmness~pectin, data=Pectin.data)

summary(model)

Usually of less interest:
t-test for the intercept in the simple linear regression model

1. Hypotheses: Parameter of interest β0.

test type hypotheses
upper tail H0 : β0 ≤ β00 vs. Ha : β0 > β00

lower tail H0 : β0 ≥ β00 vs. Ha : β0 < β00

two tail H0 : β0 = β00 vs. Ha : β0 6= β00

Choose α.

2. Assumptions: Random sample, regression model is appropriate

3. Test statistic:

t0 =
β̂0 − β00

se(β̂0)
, df = n− 2

4. P-value:

test type P-value
upper tail P (t > t0)
lower tail P (t < t0)
two tail 2P (t > abs(t0))

5. Decision: If P − value < α reject H0, otherwise do not reject H0.

6. Context:

Continue Example 2.2.1.(Pectin-firmness data)
Test if the intercept is different from 50.

1. Hypotheses: Parameter of interest β0. H0 : β0 = 50 vs. Ha : β0 6= 50, β10 = 50. α = 0.05.

2. Assumptions: Random sample (the description suggests it is a random sample), regression
model is appropriate, for checking this assumption we will learn how to do a residual analysis.

18



3. Test statistic:

t0 =
50.43− 50

1.5409
= 0.279, df = 4

4. P-value: This is a two-tailed test, therefore P-value= 2P (t > abs(t0)), or 2 times the area to
the right of t0 = 0.279. According to the t-distribution table, the area is larger than 0.10.

P − value > 2(0.10) = 0.20.

5. Decision: P − value > 0.20 > 0.05 = α, do not reject H0.

6. Context: At significance level of 5% the data do not provide sufficient evidence that the mean
firmness of the sweet potatoes when using no pectin is different from 50.

Analysis of Variance:
The model utility test can be also approached through an analysis of variance (ANOVA) in the
response variable. Here we are analysing (taking apart) the sample variance of the response variable
observations, y1, . . . , yn.
When conducting an ANOVA the different sources of the variance in the response variable are
considered. In regression analysis the potential sources are the regression, i.e. the dependency of the
response variable on the predictor, and the error (residual), i.e. the fact that for fixed values of the
predictor variable the response varies (for example not all people of the height(predictor) have the
weight(response)).
It all starts with observing

yi − ȳ = (ŷi − ȳ) + (yi − ŷi) (2.10)

From here we get:
n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(ŷi − ȳ)2 +
n∑
i=1

(yi − ŷi)2 (2.11)

Proof:
When squaring equation 2.10 and totalling for all observations we get

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(ŷi − ȳ)2 + 2
n∑
i=1

(ŷi − ȳ)(yi − ŷi) +
n∑
i=1

(yi − ŷi)2

=
n∑
i=1

(ŷi − ȳ)2 + 2
n∑
i=1

(ŷi(yi − ŷi)− ȳ(yi − ŷi)) +
n∑
i=1

(yi − ŷi)2

=
n∑
i=1

(ŷi − ȳ)2 + 2
n∑
i=1

ŷiei︸ ︷︷ ︸
=0

−2ȳ
n∑
i=1

ei︸ ︷︷ ︸
=0

+
n∑
i=1

(yi − ŷi)2

=
n∑
i=1

(ŷi − ȳ)2 +
n∑
i=1

(yi − ŷi)2

The left side of 2.11 is the total sum of squares, SST , measuring the total variation present in the
measurements for the response variable y.
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The first sum on the right side, SSR, measures how much of the variation can be accounted for
through the regression model, and the second sum, SSRes, is the residual variation which can not be
accounted for through the regression model.
We get

SST = SSR + SSRes (2.12)

Observe, that SST = SSyy, and that therefore SSR = β̂1SSxy (see equation 2.9).
A similar equation holds for the degrees of freedom

dfT = dfR + dfRes (2.13)

with dfT = n− 1, dfR = 1, and dfRes = n− 2
In order to assess, if the regression model is explaining any of the variation in y, i.e. if β1 6= 0, use
the F-score

F =
MSR
MSRes

=
SSR/dfR

SSRes/dfRes

as we will later see F is F-distributed. In the context of multiple regression the equivalent test will
be more relevant than here.

# R code for calculating the sum of squares

anova(model)
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2.4 Estimation of the mean response

In some applications, beyond investigating the relationship, one aims to use the data and model to
estimate the mean of the response for given values of the predictor.
A typical example would be models for the real estate market where property prices are estimated
based on size, living space, age, number of bedrooms, etc.

A point estimator for the mean response given the predictor is x0 can be found from the least squares
line

Ê(Y |x0) = µ̂Y |x0 = β̂0 + β̂1x0

Properties of the estimator µ̂Y |x0 :

� linear in Y1, . . . , Yn, because β̂0 and β̂1 linear in Y1, . . . , Yn,

� normally distributed because it is linear in normally distributed random variables,

� with mean E(µ̂Y |x0) = E(β̂0 + β̂1x0) = E(β̂0) + E(β̂1)x0 = β0 + β1x0 = µY |x0 = E(Y |x0),

� and with variance

Var(µ̂Y |x0) = Var(β̂0 + β̂1x0)

= Var(Ȳ − β̂1x̄+ β̂1x0)

= Var(Ȳ + β̂1(x0 − x̄))

=∗
σ2

n
+
σ2(x0 − x̄)2

SSxx

= σ2

(
1

n
+

(x0 − x̄)2

SSxx

)
.

Using at =∗ that Cov(Ȳ , β̂1) = 0.

Thus, under the assumption of the simple linear regression model

t =
µ̂Y |x0 − µY |x0

σ̂

√(
1
n

+ (x0−x̄)2

SSxx

)
is t-distributed with df = n− 2.

Corollary:
A (1− α)× 100% confidence interval for E(Y |x0) is given by

µ̂Y |x0 ± tn−2
α/2 σ̂

√(
1

n
+

(x0 − x̄)2

SSxx

)
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Continue Example 2.2.1 (Pectin-firmness data)
Estimate the mean firmness of potatoes for x0 = 2% of pectin using a 95% confidence interval.

[48.93 + 10.333(2)]± 2.776(2.39)

√(
1

6
+

(2− 1.5)2

9

)
gives 69.596±2.938, gives [66.658, 72.534]. We are 95% confident that the mean firmness of potatoes
falls between 66.7 and 72.5, when using 2% of pectin.

#R code for calculating confidence interval for mean response

new<-data.frame(pectin=2,firmness=0)

predict(model,new,interval="confidence",level=0.95)

2.5 Prediction of new observations

In other applications, one aims to use the data and model to predict future values of the response,
i.e. predicting values of y when x = x0. Since a normal error is assumed, the range of possible values
of y would have to be −∞ to∞ for all x0. Therefore the goal is to predict the middle (1−α)×100%
of y values when x = x0.

Mathematically this calls for an interval so that the probability for Y0 = Y |x0 to fall within equals
1− α.
ŷ0 = Ŷ |x0 = β̂0 + β̂1x0 is an unbiased point estimator for a future value Y0 = Y |x0. and

Ψ = Y0 − ŷ0

is normally distributed with mean zero and variance

Var(Ψ) = V ar(Y0 − ŷ0) = V ar(Y0) + V ar(ŷ0) = σ2

(
1 +

1

n
+

(x0 − x̄)2

SSxx

)
We can add the variances because Y0 and ŷ0 are independent.
Therefore

t =
Y0 − ŷ0

σ̂2
(

1 + 1
n

+ (x0−x̄)2

SSxx

)
is t-distributed with df = n− 2.

Corollary:
A (1− α)× 100% prediction interval for Y |x0 is given by

[β̂0 + β̂1x0]± tn−2
α/2 σ̂

√(
1 +

1

n
+

(x0 − x̄)2

SSxx

)

Proof:
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P

(
ŷ0 − tn−2

α/2 σ̂

√(
1 +

1

n
+

(x0 − x̄)2

SSxx

)
≤ Y0 ≤ ŷ0 + tn−2

α/2 σ̂

√(
1 +

1

n
+

(x0 − x̄)2

SSxx

))
= 1− α

Continue Example 2.2.1. (Pectin-firmness data)
Predict the firmness of potatoes for x0 = 2% of pectin using a 95% prediction interval.

[48.93 + 10.333(2)]± 2.776(2.39)

√(
1 +

1

6
+

(2− 1.5)2

9

)
gives 69.596±7.251, gives [62.345, 76.847]. We predict that 95% of potatoes have a firmness between
62.3 and 76.8, when using 2% of pectin.
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#R code for calculating prediction interval and creating plot

new<-data.frame(pectin=2,firmness=0)

predict(model,new,interval="prediction",level=0.95)

library(HH)

ci.plot(model)

2.6 Model fit

One way to measure model fit is through the Coefficient of Determination

R2 =
SSR
SST

= 1− SSRes
SST

The SSRes is the amount in the total Sum of Squares in y, which remains unexplained by the model.
Therefore the R2 is the proportion of the variance in y which can be explained by the model.
For the example R2 = 0.9768. It seems as if the firmness is almost totally dependent on the pectin
concentration.
Caution:
If the there is little variation in the predictor/regressor variable, i.e. β2

1SSxx/(n− 1) is small relative
to σ2, then R2 tends to be small. this can be observed from a result by Hahn(1973), who showed
that

E(R2) ≈ β2
1SSxx/n− 1

β2
1SSxx/(n− 1) + σ2

R2 does not indicate if the model is appropriate, but if it is a useful model how much of the variation
is captured by it.

#R code for creating output including R^2

summary(model)

2.7 Potential Problems with Regression

1. non linear

2. outliers.

3. violation of homoscedasticity assumption.

4. multicollinearity
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3 Maximum Likelihood

In the last chapter estimation by least-squares was introduced. In this chapter Maximum-Likelihood
estimators for the simple linear regression model will be introduced and discussed.

Read “On maximum likelihood estimation”

To determine the Maximum Likelihood (ML) estimator first obtain the likelihood or log likelihood
function.
Assuming that the error for the n data points, (xi, yi) , 1 ≤ i ≤ n is NID(0,σ2) (NID means: normal,
identical, and independent), the density function of the normal distribution is needed.

f(x, µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
Since the mean of yi is µyi = β0 + β1xi and variance σ2

yi
= σ2 the likelihood for point each (xi, yi),

1 ≤ i ≤ n is

f(yi, µyi , σ
2
yi

) =
1√

2πσ2
exp

(
−(yi − β0 − β1xi)

2

2σ2

)
Since we have to find the likelihood for the entire sample which is the likelihood for independent
measurements (x1, y1) and (x2, y2) and . . . and (xn, yn).
(Probabilities for independent events multiply)

L((yi), (xi), β0, β1, σ
2) =

n∏
i=1

1√
2πσ2

exp

(
−(yi − β0 − β1xi)

2

2σ2

)
= (2πσ2)−n/2exp

(
1

2σ2

n∑
i=1

−(yi − β0 − β1xi)
2

)

For this function we now have to find the values for β0, β1 and σ2 for which L is the largest. Those
are then called the maximum likelihood estimators β̃0, β̃1 and σ̃2.
This is much easier when we first use the logarithm of the function for the log likelihood:

lnL((yi), (xi), β0, β1, σ
2) = −n

2
ln(2π)− n

2
ln(σ2)−

(
1

2σ2

) n∑
i=1

(yi − β0 − β1xi)
2

The ML estimates are the roots of the system of partial derivatives of the log likelihood function.

∂ln(L)

∂β0

= −
(

1

2σ2

) n∑
i=1

2(yi − β0 − β1xi)(−1) =
n

σ2

(
n∑
i=1

yi − nβ0 − β1

n∑
i=1

xi

)
and

∂ln(L)

∂β1

= −
(

1

2σ2

) n∑
i=1

2(yi − β0 − β1xi)(−xi) =
n

σ2

(
n∑
i=1

xiyi − β0

n∑
i=1

xi − β1

n∑
i=1

x2
i

)
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and
∂ln(L)

∂σ2
= − n

2σ2
+

(
1

2σ4

) n∑
i=1

(yi − β0 − β1xi)
2

Claim: The solution to the system

∂ln(L)

∂β0

=
∂ln(L)

∂β1

=
∂ln(L)

∂σ2
= 0

is given by

β̃1 =

∑n
i=1 xiyi∑
x2
i

, β̃0 = ȳ − β̃1x̄, and σ̃2 =

(
1

n

) n∑
i=1

(yi − β̃0 − β̃1xi)
2

Proof : Homework

Comment: Interestingly the ML estimator is the same as the Least-Squares estimator
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