
9 Generalized Linear Models

The Generalized Linear Model (GLM) is a model which has been built to include a wide range
of different models you already know, e.g. ANOVA and multiple linear regression models are just
special cases of this model. But it also includes models permitting the response to be categorical,
and/or the error not being normal.

9.1 Components of a GLM

• Random component

• Systematic component

• Link function to link random and systematic component

9.1.1 Random component

The random component identifies the response variable Y and gives the distribution of Y

• For a multiple linear regression model the distribution of Y is normal.

• We will study GLMs for binary outcomes (success/failure) and outcomes resulting from count-
ing. In such cases it is not meaningful to assume a normal random component, but for binary
outcomes Y has a binomial distribution and for counts the Poisson distribution is often a good
choice for the random component.

• In general the different observations are assumed to be independent and are denoted by
Y1, . . . , Yn).

9.1.2 Systematic component

The systematic component specifies the explanatory variables. Since this is a linear model the
systematic component is linear in the coefficients β0, . . . , βk.
The linear predictor is:

β0 + β1x1 + β2x2 + · · ·+ βkxk

The regressors can be interaction terms or transformations of the predictor variables as we have see
in MLRMs. In multiple linear regression this is the right hand side of the model equation (omitting
the error).

9.1.3 Link function

The link function links the random component with the systematic component. More specific: let µ
be the mean of Y , then the link function g relates the mean µ with the linear predictor.

g(µ) = β0 + β1x1 + β2x2 + · · ·+ βkxk

• For MLRMs g(µ) = µ (identity)

µ = β0 + β1x1 + β2x2 + · · ·+ βkxk.
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• For count data the logarithm g(µ) = ln(µ) is used

ln(µ) = β0 + β1x1 + β2x2 + · · ·+ βkxk

The model is called a loglinear model.

• For binary data the logit link function g(µ) = ln(µ/(1− µ)) is often used.

Since for binary variables µ = π, the success probability, the model relates the log odds with
the predictor variables.

log(µ/(1− µ)) = β0 + β1x1 + β2x2 + · · ·+ βkxk

The resulting GLM is then called logistic regression model.

The GLM is a ”Super Model” which unifies many different models under one umbrella. Maximum
Likelihood estimators are used instead of least squares estimators.

9.2 Maximum Likelihood

A Maximum-Likelihood Estimator (MLE) for a parameter is chosen, such that the chance of the
data occurring is maximal if the true value of the parameter is equal to the value of the Maximum
Likelihood Estimator.

The likelihood function L
L : Θ× Rn → [0, 1]

assigns to parameter value θ ∈ Θ and sample data ~y ∈ Rn the likelihood to observe the data ~y, if θ
is the true parameter value describing the population.

Let f(~y|θ) be the density function for random variable ~Y (representing the random sample) with
parameter θ, then the Likelihood function is:

L(θ|~y) = f(~y|θ)

The MLE for θ based on data ~y is the value θ̃ which maximizes the likelihood function for the given
~y.
In most cases it will be easier to maximize the function of l := ln(L). This is valid because the ln
function is monotonic increasing.

9.3 GLM for binary data

We will assume in this section a binary response variable (success/failure), Y . Then Y has a binomial
distribution with probability for success of π, and the probability of failure is 1− π.
Usually success is coded by a 1 and failure by 0. Single observations can be viewed as binomial
distributions with n = 1, also called a Bernoulli distribution.

Because Y has a binomial distribution the random component for binary data is binomial.
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The GLMs for binary data model the success probability, π in dependency on explanatory variables.

The systematic component is the linear predictor in one variable.

β0 +
k∑

i=1

βixi

In order to express that the probability of success depends on explanatory variables x1, . . . , xk write
π(x1, . . . , xk).
In the following sections link functions logit, and probit are presented for binary response.

9.3.1 Logit

The model based on the logit link function combined with the linear predictor results in the following
model for the logit of π(x1, . . . , xk):

ln(π(x1, . . . , xk)/(1− π(x1, . . . , xk)) = β0 +
k∑

i=1

βixi

this is equivalent to:

π(x) =
exp(β0 +

∑k
i=1 βixi)

1 + exp(β0 +
∑k

i=1 βixi)

This model is called the logistic regression model.

The relationship between a predictor xi and π(xi) is S-shaped.
This choice of link function enforces:

0 ≤ exp(β0 +
k∑

i=1

βixi)/(1 + exp(β0 +
k∑

i=1

βixi)) ≤ 1,

or 0 ≤ π(x1, . . . , xk) ≤ 1 for all values of x1, . . . , xk.
Properties:
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• When βi > 0, then π(x1, . . . , xk) increases as xi increases.

• When βi < 0, then π(x1, . . . , xk) decreases as xi increases.

• When βi = 0 then the curve is a horizontal line.

• The larger |βi|, the steeper the increase (decrease).

The MLEs can not be given in closed form and have to be found using an iterative method, like we
have seen in nonlinear regression.

Example 9.1.
To illustrate use data from Koch & Edwards (1988) from a double-blind clinical trial investigating a
new treatment for rheumatoid arthritis. (included in the ”vcd” package – data(Arthritis))
The data include information on 84 patients; if they were treated (yes/no), their sex(Female, Male)
and age, and if they have improved(None, Some, Marked).
In order to make the outcome binary we will distinguish between patients who got better (Improved
= Some or Improved = Marked), who didn’t.
The main question is to find out if the treatment helped when correcting for age and sex.
Let π be the probability for getting better, then the model is

logit(π) = β0 + β1treaty + β2age+ β3sexm

The R code and partial output:

library(vcd)

Arthritis$better <- 1-(Arthritis$Improved=="None")

attach(Arthritis)

model.glm <- glm(better~Sex+Age+Treatment,family=binomial("logit"))

anova(model.glm)

summary(model.glm)

Analysis of Deviance Table

Model: binomial, link: logit

Response: better

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 83 116.449

Sex 1 4.6921 82 111.757

Age 1 7.4973 81 104.259

Treatment 1 12.1965 80 92.063

> summary(model.glm)

Call: glm(formula = better ~ Sex + Age + Treatment, family = binomial("logit"))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.01546 1.16777 -2.582 0.00982

SexMale -1.48783 0.59477 -2.502 0.01237

Age 0.04875 0.02066 2.359 0.01832

TreatmentTreated 1.75980 0.53650 3.280 0.00104

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 116.449 on 83 degrees of freedom

Residual deviance: 92.063 on 80 degrees of freedom

AIC: 100.06

Number of Fisher Scoring iterations: 4

The estimated model equation has been found after 4 iterations:

logit(π) = −3.02 + 1.76treaty + 0.05age− 1.49sexm
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Since β1 > 0 we conclude that the treatment had on positive effect on the chance of getting better,
and since β3 > 0 we find that older patients had a better chance of getting better in the study and
since β3 < 0 we find that women had a greater chnce of improving in this study.
The intercept would apply to patients who did not get treated, were of age 0 and female. The chance
of getting better for such patients would be estimated to be exp(−3.02)/(1 + exp(−3.02)) = 0.047.
Not of interest here.

9.3.2 Probit

Another S-shaped curve used to link the probability for success with the linear predictor is the
cumulative distribution function of a normal distribution,Φ.

Φ(z) =
1√
2π

∫ z

−∞
e−

x2

2 dx

The normal cumulative distribution function shows the S-shape shown in the diagram above.
The link function is the Inverse Cumulative Distribution Function of the standard normal distribu-
tion, Φ−1, called the probit function, which assigns to numbers between 0 and 1 the percentile of the
standard normal distribution.

The same properties hold as for the logit function.
The probit model is given by

probit(π(x)) = β0 +
k∑

i=1

βixi

Therefore

π(x1, . . . , xk) = Φ(β0 +
k∑

i=1

βixi)

Example 9.2.
Using the probit link function for the Arthritis data, the model is

probit(π) = β0 + β1treaty + β2age+ β3sexm

R code and output

model.glm.p <- glm(better~Sex+Age+Treatment,family=binomial("probit"))

anova(model.glm.p)

summary(model.glm.p)

Analysis of Deviance Table

Model: binomial, link: probit

Response: better

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 83 116.449

Sex 1 4.6921 82 111.757

Age 1 7.1730 81 104.584

Treatment 1 12.6550 80 91.929

> summary(model.glm.p)

Call: glm(formula = better ~ Sex + Age + Treatment, family = binomial("probit"))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.79023 0.67852 -2.638 0.008329

SexMale -0.90071 0.34390 -2.619 0.008816

Age 0.02874 0.01207 2.381 0.017265

TreatmentTreated 1.07894 0.31130 3.466 0.000528
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 116.449 on 83 degrees of freedom

Residual deviance: 91.929 on 80 degrees of freedom

AIC: 99.929

Number of Fisher Scoring iterations: 4

Again after 4 iteration the estimation process halted. The estimated model equation is:

logit(π) = −1.79 + 1.08treaty + 0.03age− 0.90sexm

The interpretation of the signs of the coefficient is consistent with the logistic regression model.

To answer if the probit or logit model is the better choice for this data, model fit measures have to
be compared.

9.4 GLMs for count data

Many discrete response data have counts as outcomes.
For example

• the number of deaths by horse kicking in the Prussian army (first application)

• the number of family members,

• the number of courses taken in university,

• number of leucocytes per ml,

• number of students in course after first midterm,

• number of patients treated on a certain day,

• number of iterations to get ”close” to the solution.

In this section we will introduce a model for response variables which represent counts.
GLMs for count data use often the Poisson distribution as random component.

9.4.1 Poisson distribution

The density of a Poisson random variable Y representing the number of successes occurring in a
given time interval or a specified region of space is given by the formula:

P (Y = y) =
exp(−µ)µy

y!

for non negative whole numbers y.
Where µ = mean number of successes in a given time interval or region of space.
For a a random variable Y with Poisson distribution with parameter µ:

E(Y ) = µ, and V ar(Y ) = µ
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Example 9.3.
A computer salesman sells on average 3 laptops per day. Use Poisson’s distribution to calculate the
probability that on a given day he will sell

1. some laptops on a day,

2. 2 or more laptops but less than 5 laptops.

3. Assuming that there are 8 working hours per days, what is the probability that in a given hour
he will sell one laptop?

Solution:

1. P (Y > 0) = 1− P (Y = 0) = 1− exp(−3)30
0!

= 1− exp(−3) = 0.95

2. P (2 ≤ Y ≤ 4) = P (Y = 2) + P (Y = 3) + P (Y = 4) = e−3
(

32

2!
+ 33

3!
+ 34

4!

)
= 0.616

3. The average number of laptops sold per hour is µ = 3/8, therefore

P (Y = 1) = exp(−3/8)(3/8)1
1!

= exp(−3/8) · 3/8 = 0.26

9.4.2 Poisson Regression/Loglinear Model

• Random component is the Poisson distribution.

• The systematic component is as usual the linear predictor.

When the predictor is numerical the model is usually called a Poisson Regression Model, but
if it is categorical it is called a Loglinear Model, or in general the Poisson loglinear model.

• The link function is the natural logarithm (ln).

The Poisson regression/loglinear model has the form

ln(µ) = β0 +
k∑

i=1

βixi

which is equivalent to

µ = exp(β0 +
k∑

i=1

βixi) = exp(β0) exp(β1)
x1 exp(β2)

x2 · · · exp(βk)xk

For one unit increase in xi the mean changes by a factor of exp(βi).

• If βi = 0, then exp(βi) = 1 and the mean of Y is independent of xi.

• If βi > 0, then exp(βi) > 1 and the mean of Y increases when xi increases.

• If βi < 0, then exp(βi) < 1 and the mean of Y decreases when xi increases.
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Example 9.4.
Classic Example: Whyte, et al 1987 (Dobson, 1990) reported the number of deaths due to AIDS in
Australia per 3 month period from January 1983 - June 1986.
The data: X = time (measured in multiple of 3 month after January 1983)
Y = # of deaths in Australia due to AIDS

xi yi xi yi
1 0 8 18
2 1 9 23
3 2 10 31
4 3 11 20
5 1 12 25
6 4 13 37
7 9 14 45

The graph shows a nonlinear relationship and a loglinear model seems to be a reasonable choice.
To fit the Poisson Regression model use

time <- 1:14

count <- c(0,1,2,3,1,4,9,18,23,31,20,25,37,45)

AIDS <- data.frame(time,count)

glm.Aids <- glm(count~time, family=poisson(), data=AIDS)

anova(glm.Aids)

summary(glm.Aids)

Part of the output

> anova(glm.Aids)

Analysis of Deviance Table

Model: poisson, link: log

Response: count

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 13 207.272

time 1 177.62 12 29.654

> summary(glm.Aids)

Call:

glm(formula = count ~ time, family = poisson())

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.33963 0.25119 1.352 0.176

time 0.25652 0.02204 11.639 <2e-16

---

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 207.272 on 13 degrees of freedom

Residual deviance: 29.654 on 12 degrees of freedom

AIC: 86.581

Number of Fisher Scoring iterations: 5

The coefficient table shows the parameter estimates, their standard errors and test statistic for testing
if the coefficient is zero.
The estimated equation is

µ̂ = exp(.340 + .257time)

In this period the number of deaths due to AIDS in a year was in average exp(.257) = 1.29 times
higher than in the year before.
The deviance is a measure of fit we will look at shortly.
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The graph shows that in the beginning and the
end of the time period the residuals are nega-
tive, but in the center period they are positive.
This points to the fact that the model is not en-
tirely appropriate. It can be improved by using
ln(time) instead of time as an explanatory vari-
able, but the interpretation of those results is
less intuitive.

Also, for times 9 and 10 the model does not give
a good fit.

9.5 Inference about Model Parameters

For testing if the model parameters (βi 0 ≤ i ≤ k) are different from zero, a Wald Z or likelihood
ratio test can be done.
This

1. H0 : βi = 0 versus Ha : βi 6= 0, choose α.

2. Assumptions: Random samples, samples have to be large for the ML- estimator to be approx-
imately normal

3. Test statistic:

• Wald Z: z0 = β̂/SE(β̂)

• Likelihood ratio: χ2
0 = −2 ln(l0/l1), df = 1, where l0 is the log likelihood value for the

model not including the parameter, and l1 is the log likelihood value for the model includ-
ing the function.

4. P-value:

• Wald Z: P = 2P (Z > |z0|)
• Likelihood ratio: P = P (χ2 > χ2

0)

5. Conclusion

6. Context

Example 9.5.
For the Aids in Australia example, test if time has an effect on the number of death due to Aids.

1. H0 : β1 = 0 versus Ha : β1 6= 0, α = 0.05.

2. Assumptions: Random samples, sample size is ok
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3. Test statistic: Wald Z: Z0 = 11.639 (from the output)

4. P-value: P = P (Z0 > 11.639) < 0.001.

5. Conclusion: Reject H0.

6. Context: At significance level of 5% the data provide sufficient evidence that the time has an
effect on the number of death due to Aids in Australia.

9.6 Model Fit and Comparison

As mentioned above the likelihood ratio test statistic is:

χ2 = −2 ln(l0/l1) = −2(ln(l0)− ln(l1)) = −2(L0 − L1)

where L0 = ln(l0) and L1 = ln(l1) are the log-likelihoods for the model not including xi (βi = 0) and
the model including xi (βi 6= 0), respectively.
It is based on the maximum log-likelihood values for two different models, and allows us in that way
to compare the two models.

This idea is generalized to obtain measures of model fit and comparing models in general.

9.6.1 Deviance

The Deviance of a model is based on the difference between the log-likelihood of the model of interest,
LM , and the log-likelihood of the most complex model which perfectly fits the data (one parameter
per ”measurement”, saturated model), LS.

Deviance = −2(LM − LS)

The deviance is the likelihood-ratio statistic for testing if the saturated model gives a significant
better fit than the model of interest. (This is equivalent to testing if all parameters in the saturated
model, which are not in the model of interest are 0).

The deviance is χ2 distributed and therefore provides a test statistic of model fit. The df of the
test statistic is the difference in the number of parameters in the saturated model and the model of
interest.
If H0 can be rejected this means that the model M provides a significant worse fit than the proposed
model. Therefore we hope that this test is not significant. This would not mean that the model fits
as well as the saturated model, but at least that there is no significant difference at this time.
Goodness of fit test based on the deviance

1. Hyp.: H0 : The proposed model fits as well as the saturated model Ha: H0 is not correct.
Choose α.

2. Assumptions: Random sample, large sample size

3. Test statistic: Deviance0 = −2(LM − LS), df=difference in the number of parameters

4. P-value=P (χ2 > Deviance0)
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Example 9.6.
For the Aids in Australia example:
In the R-output the deviance is stated as the residual deviance = 29.654, df=12. The P-value for
the test would be less than 0.001, and therefore indicate that the saturated model fits the data
significantly better than the model only including time, at α = 0.05
This residual deviance is indicating lack of model fit for the model only including time to predict
death due to Aids in Australia.
To judge model fit without formally conducting the test the good measure is Deviance/df (here=2.471).
If close to one it indicates good model fit. Here the score is not close enough and can be interpreted
as lack in model fit.

Example 9.7.
For the Arthritis data:
The residual deviance for the probit model is lower than for the logistic model, indicating better
model fit for the probit model.
The residual deviance is 91.9, df=80, resulting in a p-value=0.17, at significance level of 5% the data
do not indicate that the saturated model has a significant better model fit, supporting the chosen
model.
deviance/df=1.15 is close to 1 and therefore support the finding of proper model fit.
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