
5 Regression Diagnostic

5.1 Introduction

The conclusions we derived so far are all based on the assumption that the model is an appropriate
description of the population.
This assumption includes:

1. The observations are independent.

2. The error is normally distributed.

3. The error has mean 0 and variance σ2 independent from the values of the regressors (ho-
moscedasticity assumption).

4. Regressors and response are related linearly.

Before the results from the analysis can be trusted these assumptions have to be checked to be
reasonable. Should there be sufficient evidence from the sample that they are violated the model is
found inappropriate and needs adjustment. All tests and confidence intervals become invalid. Given
this statement, one might want to consider to start with the model diagnostics before proceeding with
the tests. In addition to checking the assumptions one should also check for outliers and influential
values, which might indicate a data input error, or an experimental error.
The first requirement can only be checked from the description of the experiment. Were the mea-
surements independently taken? If yes, we can continue, if no, then the covariance structure has to
be fixed. See General Multiple Linear Regression later in the course.
The remaining requirements are checked with the help of the (different) residuals for an estimated
model.

5.2 Residuals

The residual vector ~e was previously defined as

~e = ~Y − Ŷ

If the model is accurate the residual vector is multivariate normal with mean ~0n and Covariance
matrix σ2(In − H). Since this matrix is in general not a diagonal matrix, this means that the
residuals are in general not independent. If hij is the (i, j) entry of H, then V ar(ei) = σ2 (1− hii),
and Cov(ei, ej) = −σ2 hij.

The residuals can be viewed as realizations or measured values of the model error, and as such are
helpful for checking the assumptions concerning the model error as listed above.

Different approaches exist to standardize or scale the residuals, to be able to judge for example the
existence of outliers which can not be explained by the normal distribution.
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Definition 5.1.

1. The standardized residuals are defined as

di =
ei
σ̂
, 1 ≤ i ≤ n

2. The internally Studentized residuals are defined as

ri =
ei

σ̂
√

1− hii
, 1 ≤ i ≤ n

where hii is the ith diagonal element of the hat matrix, H = X ′(X ′X)−1X.

3. The PRESS (Prediction Sum of Squares) residuals are defined as

e(i) = Yi − Ŷ(i)

where Ŷ(i) is the fitted value of the ith response based on all observations but the ith.

4. The jackknife or externally studentized residuals are defined as

ti =
ei

σ̂(i)
√

1− hii
, 1 ≤ i ≤ n

where σ̂(i) is the estimate for σ based on all measurements but the ith.

5. hii is called the leverage of a point.

Lemma 1.

•
∑n

i=1 di = 0, E(di) = 0, 1 ≤ i ≤ n, 1
n

∑n
i=1 V ar(di) = 1.

• E(ri) = 0, V ar(ri) = 1, 1 ≤ i ≤ n.

• (Proof see text book.)

e(i) =
ei

1− hii
, 1 ≤ i ≤ n

and E(e(i)) = 0, V ar(e(i)) = σ2/(1− hii).

•

ti = ri

√
n− p− 1

n− p− r2i
, 1 ≤ i ≤ n

and E(ti) = 0, V ar(ti) = 1.

• If a measurement Yi follows the MLRM, then ti is t-distributed with df = n− p− 1.

• hii measures how far the point (xi1, . . . , xik) falls away from the centroid of the data.
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Continue Example. ??
Continue the example on the effect of age and weight on blood pressure and the analysis of the
model:

bp = β0 + β1(weight) + β2(age) + ε, ε ∼ N (0, σ2)

The following table displays the residuals for the model:
i ei = yi − ŷi di = ei/σ̂ ri = ei/σ̂

√
1− hii hii e(i) = ei/(1− hii) ti

1 0.005 0.004 0.005 0.488 0.010 0.004
2 0.853 0.615 1.267 0.764 3.622 1.52
3 -1.869 -1.346 -1.720 0.387 -3.051 -12.18
4 0.503 0.362 0.401 0.185 0.616 0.34
5 1.021 0.736 1.111 0.562 2.328 1.18
6 -0.513 -0.370 -0.595 0.614 -1.329 -0.52

5.3 Check for Normality

To check the normality assumption a normal probability plot (QQ-plot) and/or a histogram for the
residuals should be produced.
The normal probability gives a visual comparison of the percentiles from the residuals with percentiles
from a normal distribution. If these match the graph will show a straight line. See graphs below for
explanations for deviations from this pattern
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Continue Example. ??
QQ-plot for the residuals from the blood pressure data in the model

bp = β0 + β1(weight) + β2(age) + ε, ε ∼ N (0, σ2)
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Some word of caution about the Shapiro Wilk Test:
The Shapiro Wilk Test tests the null-hypothesis that a sample originates from a normal population.
For the model to be appropriate the test should not find evidence against the null hypothesis.
But as we know, a non-significant test result does not mean that there is evidence for H0 to be true,
only lack of evidence against it. In consequence my recommendation is to assess the visual tools
(histogram and QQ-plot) for outliers and symmetry to check for normality and skip the Shapiro
Wilk test, or at least to not put too much emphasis on its result.

5.4 Checking Homoscedasticity

To check if the assumption of equal variance throughout the range is justified, plot the residuals
against the different regressors and the fitted values.
The following patterns are common results
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If the residual plots resemble even scatter there is no reason for concern about a violation of the
homoscedasticity assumption. If a pattern similar to the nonlinear graph is displayed this indicates,
that the relation ship between this regressor and the response is no well modeled. A transformation
of the regressor or the response might be required to fix this problem. It could also indicate that an
important variable is missing in the model.
The two graphs at the bottom show possible patterns indicating a violation of homoscedasticity. It
might be necessary to weight the data point differently (see a later chapter).

Continue Example. ??
Residual Plots from the blood pressure data in the model

bp = β0 + β1(weight) + β2(age) + ε, ε ∼ N (0, σ2)
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Conclusion?

The third plot is called the Residual Plot (residuals against the fitted values). This plot is not directly
related to the assumptions but is still sometimes helpful to detect outliers or model violations. They
are interpreted in the same way as the residuals and predictor scattergrams.

5.5 Checking Model Structure

As explained in the subsection above, those plots might indicate a problem with the model structure,
but more effectively for detect a misspecification of the model are Partial Residual Plots.

Let X(1) be the design matrix, excluding the column ~x1.

1. Find ~e[~Y |X(1)], the residuals from the model ~Y = X(1)
~β(1) + ~ε(1)

2. Find ~e[~x1|X(1)], the residuals from the model ~x1 = X(1)
~βx,(1) + ~ε#,

3. Plot ~e[~Y |X(1)] against ~e[~x1|X(1)].

The least squares slope for the model

~ε[~Y |X(1)] = β1~e[~x1|X(1)] + ε∗

is equal to β̂1.

The rationale for the partial residual plot is:

1. First take out of ~Y , what can be explained by all regressors but x1.

2. Second find what is ”unique” in x1, by eliminating from x1, what can be explained by the
remaining regressors.

3. Now investigate, if the ”unique” information from x1 has additional information about what
in the response can not be explained by the other regressors. The plot will display the nature
of the relationship between the unique parts in x1 and Y . If the model is appropriate then the
graphs should show a linear pattern.
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Continue Example. Investigate the true nature of the relationship between weight and blood
pressure.

1. Fit the model
bp = β0 + β2(age) + ε, ε ∼ N (0, σ2)

the residuals are ~e [~bp|X(1)] = (2.7,−12.1, 4.9, 0.9, 9.9,−6.3).

2. Fit the model
weight = β#

0 + β#
2 (age) + ε#, ε# ∼ N (0, σ2)

the residuals are ~e [weight|X(1)] = (−1.1, 4.7,−1.3,−0.6,−4.6, 2.9).

3. Plot the two residual vectors.

In a similar way the partial residual plot for age was found. Both plots show a linear pattern
and support the model.

The usefulness of partial residual plots is limited when several variables have been misspecified. They
also do not indicate the presence of interaction effect between regressors. They can be misleading in
the presence of multicollinearity.

5.6 Identifying Outliers and Influential Values

An outlier is an extreme observation. Outliers can be outliers in regard to the response variable (Y -
space) or in regard to the values of the regressor variables (X-space). High influence measurements
are those where small changes in X or Y have a large influence on the estimated regression function.
All measurements which have “large” residuals and/or fall apart from the general pattern in the
residual plots are potential (Y -space) outliers and should be investigated. If they are high influence
measurements, then they might have to be removed from the data-set and separately reported.
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• The solid circle represents an outlier in x-space and is a high leverage point (a point falling
away from the other measurements), but is not highly influential, the least squares line is not
very much influenced the presence of the point, compare the solid line with the dashed line.

• The solid triangle is an outlier in x space and high leverage point as well, and is also highly
influential. The intercept and slope change significantly when adding this observation, compare
the solid line with the dotted line.

• The solid diamond is an outlier in y − space, and is highly influential on the least squares
estimators of slope and intercept. Compare the line with the negative slope with the solid line.

It is important to identify all outliers and double check data entry, highly influential observations
should be removed and reported separately.

Identification of outliers start with the inspection of the different residuals. For example large stan-
dardized residuals or studentized residuals (larger than 3) point to potential outliers. The comparison
of jackknife residuals with the studentized residuals is especially helpful to identify outliers and highly
influential measurements.
In the example the third measurement has a very high jackknife residual (absolute and in comparison
with the studentized residual), and therefore a test for it being an outlier seems to be appropriate.
Since the jackknife residuals are t-distributed if the MLRM model describes the observation, these
can be used to conduct an outlier test.
Since it is appropriate to test each measurement it is important to apply a Bonferroni correction
when conducting this test, since conducting n tests can result in a large overall error if no correction
is applied.

Continue Example.

9



1. H0 : third measurement fits the model (based on all measurements but the third) versus Ha :
H0 is not true

α = 0.05/n = 0.05/6 = 0.0083

2. See above

3. t0 = −12.18, df = 6− 3− 1 = 2

4. P-value= 2P (t > 12.18) = 0.00667 (using R: 2*(1-pt(12.18,2)))

5. Since P-value is smaller than α, Reject H0.

6. According to the test measurement 3 should be considered an outlier.

What is causing this being an outlier? Error when entering data? Wrong measurement? Another
explanatory variable? Or just an uncommon value?

Comment:

1. Two or more outliers close to each other can hide each other, and are not detected by using
jackknife residuals.

2. Single outliers are not so much a problem in large data sets.

What to do with outliers?

1. Check for data entry mistake.

2. Go back to the experiment and try to answer what caused the measurement.

3. Exclude the measurement from the analysis and report separately, for statistical honest report-
ing.

Reoccurring outliers can be systematic:

Example 5.1.
(Reported in Faraway) A NASA satellite was launched to record and monitor atmospheric informa-
tion, but missed for many years (until 1985) the decline in ozone above the Antarctic, because the
data analysis tool automatically removed outliers from the analysis. The low ozone values therefore
were treated as outliers (and not reported) until a British survey reported the decline in ozone above
the Antarctic in 1985.

Leverage:
The hat matrix, H = X ′(X ′X)−1X, is proportional to the covariance matrix of Ŷ , therefore the
diagonal entries, hii, measure the variance in Ŷ , or one could look at 1 − hii being proportional
to the variance of the ith residual. Therefore the (i, j) entry measures the impact or leverage of
the ith measurement on the jth fitted value, Ŷj. The ith diagonal entry indicates the distance of
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the ith measurement from the center of the x-space. Observation falling far away from the center
potentially have a high impact on the least squares estimates of ~β. This is not always true, remember
the solid dot in the diagram above being an outlier in x-space but not being influential. We consider
measurements with hii > 2p/n of being potentially high leverage points.

Cook’s Distance:
Cook’s distance measures the difference in the least squares estimator based on all measurements
versus all but one measurement and in that way measures how sensitive the estimates are to the
presence of this one measurement.

Definition 5.2.
Let β̂(i) notify the least squares estimate of the parameter vector ~β based on all measurements but
the ith. The Cook’s distance for measurement i is defined as

Di =
(β̂ − β̂(i))′(X ′X)(β̂ − β̂(i))

p σ̂2
=

(ŷ − ŷ(i))′(ŷ − ŷ(i))
p σ̂2

, 1 ≤ i ≤ n.

Observations with large Cook’s D identify highly influential measurements.
In order to judge if Di is large it is compared to the α percentile of the F distribution with df1 = p
and df2 = n− p: with the interpretation:
If Di = F0.5,p,n−p then just removing point i from the data set would move β̂(i) to the boundary of a

50% confidence region for ~β based on the complete data set. Quite a strong effect.
Since the F0.5,p,n−p ≈ 1, a Cook’s distance> 1 is suspicious. This is just a rule of thumb, since Cook’s
distance is not truly F-distributed, but this rule works pretty well in practice.

Continue Example.
The Cook’s distances for the six measurements are:
8.8×10−6, 1.73, 0.624, 0.0121, 0.526, 0.187
Plotting them against the fitted values gives (identifying the most extreme):

Cook’s distance for measurement 2 is the largest and grater than 1. We now should investigate the
effect of removing measurement 2 from the sample on the least squares estimates.
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Regressor β̂ β̂(2)
(Intercept) -66.13 -42.27
AGE 0.44 2.07
WEIGHT 2.40 0.41

Conclusion?

After identifying highly influential observations, the question arises what should be done about them.
Their treatment is similar to the outlier treatment, first check if they are caused by an error in the
data entry, or a wrong measurement in the experiment. If it is a legitimate observation, then it is
hard to argue for it to be removed.
If the number of influential observations, which can not be discarded, is substantial, one should use
a robust estimation technique.
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