
1 Contingency Tables

Measure association between categorical variables. Similar to Pearson’s Correlation Coefficient for
numerical variables.

1.1 Probability Structure

Distribution of ONE categorical variable X, with possible outcomes x1, . . . , xk
The distribution is described by the outcomes and their probabilities: πi = P (X = xi), with∑

i

πi = 1

The distribution table of the random variable X:

xi πi
x1 π1
x2 π2
...

...
xk πk

1

Example 1
Random variable X=Use of phone while driving(Yes/No), therefore categorical

x P (X = x)
Yes 0.6
No 0.4

1

Joint distribution of two categorical random variables lead to probability tables.

Let X be a random variable with I categories,
Let Y be a random variable with J categories.
Then the joint distribution of X and Y is described by the joint probabilities

P (X = i, Y = j) = πij, 1 ≤ i ≤ I, 1 ≤ j ≤ J, with
∑
ij

πij = 1

These can be organized in a table:

Y
X 1 2 . . . J

1 π11 π12 . . . π1J
2 π21 π22 . . . π2J
...

...
...

...
I πI1 πI2 . . . πIJ
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Example 2
Let X= person uses phone while driving (yes, no), I = 2
Let Y= person received speeding ticket or was involved in a car accident, (yes, no), J = 2.

Y
X yes no

yes π11 π12
no π21 π22

=

Y
X yes no

yes 0.1 0.5
no 0.01 0.39

The table gives the joint distribution of X and Y , for example the probability that a person using
the phone AND getting in an accident P (X = yesANDY = yes) = 0.1.
The marginal distributions are the row and the column totals of the joint probabilities and describe
the distributions of X and Y , ignoring the other variable. They are denoted by πi+ and π+j, the
”+” replacing the index totalled.

Y
X 1 2 . . . J Total

1 π11 π12 . . . π1J π1+
2 π21 π22 . . . π2J π2+
...

...
...

...
I πI1 πI2 . . . πIJ πI+

Total π+1 π+2 . . . π+J π++ = 1

Example 3
Let X= person uses phone while driving (yes, no), I = 2
Let Y= person received speeding ticket or was involved in a car accident, (yes, no), J = 2.

Y
X yes no Total

yes 0.1 0.5 0.6
no 0.01 0.39 0.4

Total 0.11 0.89 1

With the interpretation P (X = yes)=0.6, P (Y = yes)=0.11.
The marginal distributions of X and Y are, respectively:

x P (X = x)
Yes 0.6
No 0.4

1

y P (Y = y)
Yes 0.11
No 0.89

1

When interpreting one of the variables as a response variable (let’s say Y ), we are interested in the
probabilities for the different outcomes of Y , given a certain outcome of the other variable (this must
be then X).

P (Y = j|X = i) =
πij
πi+

, 1 ≤ i ≤ I, 1 ≤ j ≤ J

These probabilities make up the conditional distribution of Y given X.

2



Example 4

P (Y = yes|X = yes) =
0.1

0.6
= 0.166, P (Y = yes|X = no) =

0.01

0.4
= 0.025

The conditional distribution of Y given X=yes and X =no are, respectively:

y P (Y = y|X = yes)
Yes 0.166
No 0.833

1

y P (Y = y|X = no)
Yes 0.025
No 0.975

1

Association between X and Y ?

The same concepts can be applied to sample data, (replacing π by p), and the resulting numbers are
then interpreted as estimates for the true joint, marginal, and conditional probabilities.

1.1.1 Sensitivity and Specificity

Sensitivity and specificity are certain conditional probabilities when discussing correct classifications
using diagnostic tests.
Sensitivity = P(Test positive | Diagnosis yes), Specificity = P(Test negative | Diagnosis no)
The higher sensitivity and specificity the better the diagnostic test.

Positive Predictive Value = P(Diagnosis yes | Test positive),
Negative Predictive Value = P(Diagnosis no | Test negative)
Be aware that even when sensitivity and specificity are high the positive and negative predictive
values do not have to be high.

Example 5
(From Statistics Notes(http://pubmedcentralcanada.ca/pmcc/articles/PMC2540489/pdf/bmj00444-
0038.pdf))
Y = Pathology (abnormal, normal)
X = Liver scan (abnormal, normal)

Pathology
Liver Scan Abnormal(a) Normal(n) Total

Abnormal(a) 231 32 263
Normal(n) 27 54 81
Total 258 86 344

Estimate for joint probability paa = 231/344

Estimate for marginal probability pa+ = 263/344

Estimate for marginal probability p+a = 258/344

Estimate for conditional probability P̂ (P = a|LS = a) = 231/263

Estimate for sensitivity P̂ (LS = a|P = a) = 231/258

Estimate for specificity P̂ (LS = n|P = n) = 54/86

Estimate for positive predictive value P̂ (P = a|LS = a) = 231/263

Estimate for negative predictive value P̂ (P = n|LS = n) = 54/81
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Definition 1
Two categorical random variables are statistically independent if the conditional distributions of Y
are identical for all levels of X.

Example 6
The result of the liver scan would be independent from the pathology, if for abnormal and normal
pathology the probability of getting a normal liver scan would be the same.

Remark:
Two variables are statistically independent iff the joint probabilities are the product of the marginal
probabilities

πij = πi+π+j for 1 ≤ i ≤ I, 1 ≤ j ≤ J

1.1.2 Binomial and Multinomial Sampling

Watch out!!

� If X is a group variable (for example placebo versus treatment) and the sample sizes are fixed
for each group (for example 50 for placebo and 50 for treatment), then it does not make sense
to look at the joint probabilities.

The conditional distributions of Y are then either binomial or multinomial for each level of X,
depending on J (J = 2→ binomial, J > 2→ multinomial).

� The same is true when X is considered an explanatory variable, and Y the response variable.
Here again it makes more sense to look at the conditional distributions of Y given X. With
the same consequence for the distribution as above. (Example above: response = pathology,
explanatory = liver scan)

� When both variables can be considered response variables (Example: ask randomly chosen
students at MacEwan, which year of study they are in (1st, 2nd, 3rd, 4th), and if they use public
transportation (yes/no)), then the joint distribution of X and Y is a multinomial distribution
with the cell being the possible outcomes.

1.2 2× 2 tables

1.2.1 Comparing two Proportions

Use
π1 = P (Y = success|X = 1), π2 = P (Y = success|X = 2)

and n1 = n1+, n2 = n2+.
Then the Wald -confidence interval for π1 − π2 is

(p1 − p2)± zα/2

Ê
p1(1− p1)

n1

+
p2(1− p2)

n2

Plus four method (Agresti-Cull): For small samples the confidence interval can be improved by
adding two imaginary observations to each sample (one success and one failure).

4



An approximately normally distributed test statistic for comparing π1 and π2 is

Z =
p1 − p2È

pp(1−pp)
n1

+ pp(1−pp)
n2

with the pooled estimator

pp =
p1n1 + p2n2

n1 + n2

Example 7
A genetic fingerprinting technique called polymerase chain reaction (PCR), can detect as few as 5
cancer cells in every 100,000 cells, which is much more sensitive than other methods for detecting
such cells, like using a microscope.
Investigators examined 178 children diagnosed with acute lymphoblastic leukemia who appeared to
be in remission using a standard criterion after undergoing chemotherapy (Cave et al, 1998). Using
PCR traces of cancer were detected in 75 of the children. During 3 years of follow up 30 of the
children suffered a relapse. Of the 103 children who did not show traces of cancer 8 suffered a
relapse.
Do these data provide sufficient evidence that children are more likely to suffer a relapse, if the PCR
is positive (detect cells)?

Data:

Relapse
PCR yes no Total

positive 30 45 75
negative 8 95 103

Total 38 140 178

p1 = 30/75 = 0.4, p2 = 8/103 = 0.07767, then the 95% ci for π1 = π2

(p1 − p2)± 1.96

Ê
p1(1− p1)

n1

+
p2(1− p2)

n2

→ [0.200, 0.445]

Since 0 does not fall within the confidence interval at 95% confidence the data do provide sufficient
evidence that the proportion of children who suffer a relapse differs for those with positive PCR and
a negative PCR. The proportion of children who have a positive PCR is between 0.2 and 0.445 larger
than of children with a negative PCR.

1.2.2 Relative Risk

The relative risk measures how much more likely a success is in one group than in another. It is a
measure of association for the variables defining a 2×2 table, similar to how Pearson’s correlation
coefficient is measuring the association between two numerical variables.

Definition 2

relative risk = rr =
π1
π2
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� rr = 1⇔ π1 = π2 and the variables are independent.

� If π1 = 0.5001 and π2 = 0.5 then π1 − π2 = 0.001 and rr = 1.0002, but

� if π1 = 0.0002 and π2 = 0.0001 then still π1 − π2 = 0.0001 and now rr = 2 (the probability in
group 1 is 2 times as high as in group 2).

In the second case the difference between the probabilities is more consequential, and the
relative risk the better description for the difference.

Confidence interval for the log of the population rr

ln(p1/p2)± zα/2

Ê
1− p1
n1p1

+
1− p2
n2p2

Using the exponential function for upper and lower bound of this ci, results in a ci for the population
rr.

Example 8
PCR and relapse:

Estimated rr:

r̂r =
0.4

0.07767
= 5.15

The relative risk of a relapse for children with positive PCR versus negative PCR is estimated to be
5.15. The probability of a relapse 5.15 times larger for children with positive PCR.
The 95% ci for ln(rr):

ln(5.14999)± 1.96
È

0.6/30 + 0.92233/8→ 1.63900± 0.72092→ [0.91807, 2.35992]

Then the 95% for the true relative risk is exp(0.91807), exp(2.35992)] = [2.5044, 10.5901].
We are 95% confident that the true rr falls between 2.50 and 10.59.
Since 1 does not fall within the confidence interval at confidence level of 95% the data do provide
sufficient evidence that the rr for a relapse is different from 1. rr = 1 would mean that the probabil-
ities for a relapse is the same for children with positive and negative PCR. A relapse is between 2.5
and 10.6 times more likely for children with a positive PCR.

1.3 The Odds Ratio

The odds ratio is another measure of association in a two way tables.

Let π be the probability of success

odds =
π

(1− π)

If π = 0.75, then odds = 0.75/0.25 = 3, success is three times more likely than failure. For every
failure we expect three successes.
If π = 0.25, then odds = 0.25/0.75 = 1/3, failure is three times more likely than success.

In reverse, finding the probability when knowing the odds:

π =
odds

odds + 1
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Example 9
Assume the odds for a randomly chosen student to get an A in Stat 151 are 1:10, therefore the
probability, π of getting an A in Stat 151 is:

π =
odds

odds + 1
=

1/10

1 + 1/10
=

1/10

(10 + 1)/10
=

1

10 + 1
=

1

11

Definition 3
In a two way table, let odds1 = π1/(1− π1) the odds of success in row 1, and
odds2 = π2/(1− π2) the odds of success in row 2.
Then

θ =
odds1
odds2

is the odds ratio.

Properties:

� θ ≥ 0

� When X and Y are independent, then θ = 1 (the probabilities and odds for success are the
same in both rows).

� θ > 1 means the odds for success are higher in row 1 than in row 2. For example θ = 2, means
that the odds for success are two times higher in row 1 than in row 2. Individuals from row
one are more likely to have a successes than those in row 2.

� θ < 1 means the odds are smaller in row 1 than in row 2. Successes are less likely for individuals
in row 1 than for those in row 2 (π1 < π2).

� θ1 and θ2 indicate the same strength in association if θ1 = 1/θ2. (0.25=1/4).

� The odds ratio does not change when the table is transposed, i.e. when the rows become the
columns, and the columns the rows. (This is the advantage of the odds ratio over the relative
risk.)

� When both variables are response variables then

θ =
π11/π12
π21/π22

=
π11π22
π12π21

and the sample odds ratio θ̂:

θ̂ =
n11n22

n12n21

which is also the ML estimator for θ (what does that mean again?).

Same as for the relative risk r̂r, the distribution of θ̂ is very skewed. Therefore instead of finding
a confidence interval for θ, we will find one for ln(θ) and then transform the result to obtain a
confidence interval for θ.
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With

SE(ln(θ̂)) =

Ê
1

n11

+
1

n12

+
1

n21

+
1

n22

A confidence interval for ln (θ) is

ln(θ̂)± zα/2SE(ln(θ̂))

Example 10
Relapse and PCR

θ̂ =
30× 95

8× 45
= 7.92

The odds for a relapse are estimated to be almost 8 times higher for children with positive PCR than
for children with a negative PCR.
A 95% confidence interval for ln(θ)

ln(7.92)± 1.96

É
1

30
+

1

45
+

1

8
+

1

95
→ 2.0694± 0.8568→ [1.213, 2.926]

Which gives the following confidence interval for θ: [exp(1.213), exp(2.926)] = [3.36, 18.65]. Since
one does not fall within the interval at 95% confidence we do have sufficient evidence that a relapse
is associated with PCR.

Example 11
Hepatitis B Vaccine and Risk of Multiple Sclerosis (Alberto Ascherio et al., N Engl J Med 2001;
344:327-332)

Does the vaccine cause MS?

Data from a large study was used. For each MS patient five matching healthy women were included
for the analysis (relating to age and other factors).
Retrospective study, (was a women vaccinated, after finding if she has or has not MS).
This is a Case-control study!

Because this is a case-control study some limitations to what can be done apply.
Since the proportion of MS/Healthy patients has been chosen by the sampling design, we can not
estimate probabilities based on πMS, like P (MS|V accine), but we can estimate P (V accine|MS).
(We can make comparisons between the two samples MS and non-MS, but not vaccine and non-
vaccine)
Therefore we can not use this data for comparing the proportion of MS patients within the group of
vaccinated and non vaccinated individuals. This data can also not be used for estimating the relative
risk of MS in the two groups who were vaccinated or not.
In order to answer the question ”Does the vaccine cause MS?” the only measure that is applicable is
the odds ratio, because it is symmetric in X and Y (transposing the table has no effect on the odds
ratio).

Data:
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MS
Vaccine yes no Total

yes 32 84 116
no 158 450 608

Total 190 534 724

Two approaches can be taken to find the estimate for the odds ratio

1. p1 = 32/116 = 0.27586, p2 = 158/608 = 0.25987 (these numbers have no valuable interpretation
as explained above and are only used for calculation purposes)

(a) o1: odds for vaccinated women: o1 = p1/(1− p1) = 32/84 = 0.38095

(b) o2: odds for non vaccinated women: o2 = p2/(1− p2) = 158/450 = 0.35111

(c) θ̂: odds ratio θ̂ = o1/o2 = 1.0850

2.

θ̂ =
32× 450

158× 84
= 1.0850

The odds of getting MS is a little higher for women who were vaccinated than for those who were
not.

A 95% ci for ln(θ)

ln(1.0850)± 1.96

É
1

32
+

1

84
+

1

158
+

1

450
→ 0.081580± 0.44568→ [−0.36410, 0.52726]

Which gives following ci for θ: [exp(−0.36410), exp(0.52726)] = [0.69, 1.69]. Since 1 falls within the
interval at 95% confidence we do not have sufficient evidence that MS is associated with the vaccine.

Remark:

� An odds ratio of θ = 2, means that the odds for group 1 are double the odds for group 2.

� A relative risk of rr = 2, means that the probability for success in group1 is double the success
probability in group 2.

�

θ = rr × 1− π2
1− π1

When both probabilities are close to zero the last fraction is close to one, and θ ≈ rr.

Remark:
Odds ratio as well as relative risk are measures of association in a 2×2 table and give how much
higher the risk or odds are for one group versus another one. Usually the relative risk is easier to
interpret because it compares probabilities instead of odds. Beside the difference in interpretation
there is a difference when they are applicable. The odds ratio can be used in all types of studies,
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but the relative risk can only be used, if the rows can be interpreted as random samples from a
populations with and without the risk factor.
This means that in particular for case-control studies the relative risk is not applicable. A case-
control design involves the selection of research subjects on the basis of the outcome measurement
rather than on the basis of the exposure (see above, we chose MS patients and healthy subjects,
instead of people who were vaccinated and not vaccinated).

1.3.1 Types of studies

� Case-control, for each case find matching individuals for the control group at a given ratio.
The cases are defined to have the outcome to be studied (disease = yes)

� Cohort studies (individuals choose themselves which groups they are in, ex. person smokes
(yes/no))

� Clinical studies (individuals are randomly assigned to treatment groups by experimenter)

� Cross-sectional studies (random samples are taken and individuals are assessed which group
they fall within and their response, ex.: relapse, PCR study)

� observational studies: cohort, cross sectional, and case control (more practical)

� experimental studies: clinical (less pitfalls)

1.4 χ2 tests for Independence

Imagine two categorical variables X with I levels and Y with J levels.
Then the joint distribution of X and Y is given by.

P (X = i, Y = j) = πij 1 ≤ i ≤ I, 1 ≤ j ≤ J

For samples of size n from this joint distribution the expected cell frequencies are then

µij = nπij 1 ≤ i ≤ I, 1 ≤ j ≤ J

(similar to the mean of a binomial distribution).

If we want to test the null hypothesis that the joint distribution of X and Y equals {πij}, then
this can be done comparing the expected cell frequencies {µij} for the claimed distribution with the
observed cell counts {nij}.
The larger the differences {nij − µij} the more likely the null hypothesis is wrong.

1.4.1 Pearson’s statistic

(compare with Stat 151/141)

X2 =
∑
i,j

(nij − µij)2

µij

(studied by Pearson in 1900) Properties:
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� X2 ≥ 0

� X2 = 0 when nij = µij

� For large n: X2 is approximately χ2 distributed (diagram)

The approximation is close enough when µij ≥ 5 for all cells.

� µX2 = df , σX2 =
√

2df

� X2 is a score statistic, it is based on the distribution on the standard errors and covariances of
the nij when H0 is true.

� Large values of X2 give evidence against H0.

1.4.2 Likelihood Ratio Statistic

Reminder:

� The likelihood function l gives the probability of the data to occur depending on the parame-
ter(s).

� Find the largest value of l if H0 is true → call this l0

� Find the largest value of l if H0 is true or not → call this l1

� G2 = −2 ln(l0/l1) is the test statistic.

We get the likelihood-ratio χ2 statistic

G2 = 2
∑
ij

nij ln
nij
µij

Properties:

� G2 ≥ 0

� G2 = 0 when nij = µij

� For large n: G2 is χ2 distributed

The approximation is close enough when µij ≥ 5 for all cells.

� µG2 = df , σG2 =
√

2df

� Large values of G2 give evidence against H0.
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1.4.3 Tests for independence

Both test statistics can be used for a test for independence. We only have to answer the question,
how to find µij when X and Y are independent.
When X and Y are independent, then

µij = nπij = nπi+π+j

which can be estimated by

µ̂ij = npi+p+j =
ni+n+j

n
=

(row total)(column total)

grand total

The degree of freedom of the test statistic is the difference between the number of parameters under
Ha and H0.

� When Ha is true {πij} are I × J parameters, but one of them can not be chosen freely, since
the total has to be one, therefore there are IJ − 1 parameters under Ha

� When H0 holds the parameters are the marginal distributions {πi+} and {π+j} with I − 1
and J − 1 parameters (subtract 1 because the total has to be 1), respectively, for a total of
(I − 1) + (J − 1) = I + J − 2

� Then df = (IJ − 1)− (I + J − 2) = (I − 1)(J − 1) (some algebra).

This now leads to
Tests for Independence

1. Hyp.: H0 : X and Y are independent versus Ha : H0 is not true, choose α

2. Assumptions: random samples, {µ̂ij ≥ 5}.

3. Test Statistic: X2
0 or G2

0, df = (I − 1)(J − 1)

4. P-value: P-value=P (χ2 > X2) or P-value=P (χ2 > G2)

Example 12

A survey was conducted to evaluate the effectiveness of a new flu vaccine that had been administered
in a small community. It consists of a two–shot sequence in two weeks.
A survey of 1000 residents the following spring provided the following information:

No vaccine One Shot Two Shots Total
Flu 24 9 13 46

No Flu 289 100 565 954
Total 313 109 578 1000

1. Hyp.: H0 : Getting the flu and the vaccine are independent versus Ha : H0 is not true, α = 0.05

2. Assumptions: random samples, {µ̂ij ≥ 5} (check later).

12



3. Test Statistic: X2
0 or G2

0, df = (I − 1)(J − 1) First find the expected cell counts:

No vaccine One Shot Two Shots Total
Flu 24 9 13 46

14.40 5.01 26.59
No Flu 289 100 565 954

298.60 103.99 551.41
Total 313 109 578 1000

Then df = (3− 1)(2− 1) = 2 and

X2
0 =

∑
i,j

(nij − µ̂ij)2

µ̂ij
= 6.404 + 3.169 + 6.944 + 0.309 + 0.153 + 0.335 = 17.31

and

G2
0 = 2

∑
ij

nij ln
nij
µ̂ij

= 2

�
24 ln

24

14.40
+ · · ·+ 565 ln

565

551.41

�
= 17.26

4. P-value: P-value=P (χ2 > X2
0 ) < 0.005 or P-value=P (χ2 > G2

0) < 0.005 (table VII).

5. Reject H0, since the P-value is smaller than α = 0.05.

6. At significance level of 5% the data provide sufficient evidence that there is an association
between the vaccination status and getting the flu.

To study the nature of the association we could, for each cell, compare the observed and the expected
cell count. But since for larger estimated expected cell counts the standard error increases we need
to standardize:

Zij =
nij − µ̂ij√

µ̂ij(1− pi+)(1− p+j)
is the standardized cell residual (called adjusted residual by SPSS) for the cell in row i and column
j.
If H0 would be true these would be approximately standard normally distributed. Therefore stan-
dardized cell residuals which do not fall between −1.96 and 1.96 indicate that the particular cell
gives evidence that H0 is violated.
Should we do a multiple comparison?

Example 13

The standardized cell residuals for the flu example:

No vaccine One Shot Two Shots Total
Flu 24 9 13 46

3.1 1.9 -4.2
No Flu 289 100 565 954

-3.1 -1.9 4.2
Total 313 109 578 1000
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The significant positive residual for people, who did not get vaccinated and did get the flu, indicates
that these cases occurred more often than the we would predict under independence. The significant
negative residual for people, who were vaccinated twice and did not get the flu, indicates that these
cases occurred less often than we would predict under independence.
Together this means that non-vaccinated people did get the flu more often than expected and vacci-
nated did got the flu less often, therefore we can conclude that the vaccine helps preventing people
from getting the flu.

Since we have to do 3 tests (one for each column, since we only have two rows and the standardized
cell cell residuals add up to zero for each row and column), it might be more appropriate to do a
multiple comparison, using a significance level of α∗ = α/3 for each test.
The sample odds ratio for no vaccine and 2 shots is

θ̂ =
24× 565

289× 13
= 3.6

The estimated odds for getting the flu are 3.6 times higher for people who did not get vaccinated
compared to those who got 2 shots. Or we can say, that the estimated odds for getting the flu are
260% higher for people who did not get vaccinated compared to those who got 2 shots.
Yep, the vaccine works.

1.5 Testing Independence of Ordinal Variables

The trick for studying the association between two categorical variables is to assign numerical scores
to the categories which reflect the distance between the categories and then use tools which we would
usually use for numerical variables, like Pearson’s correlation coefficient.

1.5.1 Linear relationship between categorical variables

We are going to introduce a test to test if two ordinal variables are linearly related (if there is a
linear trend association).
– diagram
Assume scores have been assigned (how to do this we will look at later). The test statistic based on
the covariance (correlation) is then sensitive to a linear trend.
Let u1 ≤ u2 ≤ · · · ≤ . . . uI denote the scores for the row categories, and v1 ≤ v2 ≤ · · · ≤ vJ
denote scores for the column categories (the ordering of the scores should reflect the ordering of the
categories) with greater distances between categories which are considered farther apart.
The mean score for the rows and columns are then, respectively:

ū =
∑
i

ni+
n
ui =

∑
pi+ui, v̄ =

∑
j

n+j

n
vj =

∑
p+jvj

The sample covariance for X and Y isÔCov(X, Y ) =
∑
ij

pij(ui − ū)(vj − v̄)

the sample standard deviations for X and Y , respectively:

sX =

Ê∑
i

pi+(ui − ū)2, sY =
Ê∑

j

p+j(vj − v̄)2
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and the sample correlation

r =
ÔCov(X, Y )

sxsy

Properties:

� −1 ≤ r ≤ 1

� r < 1 indicates a negative relationship (the larger X the smaller Y ).

� r > 1 indicates a positive relationship (the larger X the larger Y ).

� r ≈ 0 no relationship.

This is an estimate for the population correlation ρ.
If ρ = 0

M2 = (n− 1)r2, df = 1

is approximately χ2-distributed with df = 1. Based on this we can develop a test for linear trend for
two ordinal variables.

A test about the correlation (for linear trend):

1. Hyp.: H0 : ρ = 0 versus Ha : ρ 6= 0, choose α

2. random samples

3. Test Statistic:
M2

0 = (n− 1)r2, df = 1

4. P-value: P = P (χ2 > M2
0 )

Example 14
Effect of smoking on the development of tartar. (Toutenberg: Statistical Analysis of designed
experiments (1992))

Tartar
Smoking none middle heavy Total

no 284 236 48 568
middle 606 983 209 1798
heavy 1028 1871 425 3324
Total 1918 3090 682 5690

Use coding 1,2,3 for tartar and smoking, then r = 0.095, which seems to be quite low, this is due to
the small number of possible values. Use coding 1,2,3 for tartar, and for smoking 0, 2, 3,( indicate
a larger difference between no smoking and some, than between some and heavy) then r = 0.103,
which is a little larger.
To test if there is a linear trend between these two variables

1. Hyp.: H0 : ρ = 0 versus Ha : ρ 6= 0, choose α = 0.05
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2. random samples

3. Test Statistic:
M2

0 = (n− 1)r2 = (5689)0.1032 = 60.35, df = 1

4. P-value: P = P (χ2 > M2
0 ) ≈ 0

5. Decision: Reject H0

6. Context: At significance level of 5% the data provide sufficient evidence that the more a person
smokes the more extreme the tartar build up.

Advantages of test for linear trend over test for independence:

� gain in power (power is the probability of a correct decision, when not rejecting H0). i.e. if
the test is not significant then it is more likely that there truly is no (positive or negative)
association between the ordinal variables.

� smaller sample size required to detect association (test is more sensitive).

� smaller samples are required for the approximation of the distribution to be close.

1.5.2 Assigning Scores to Ordinal Variables

Agresti ”For most data sets, the choice of scores has little effect on the results. Different choices of
ordered scores usually give similar results.”
The biggest problems occur when the data is unbalanced, i.e. if some categories have many more
observations than other. (For example when looking at the evaluation of an excellent instructor,
then categories ”excellent and ”very good” get high frequencies, but ”poor” gets none or very little).
Usually it is reasonable to use evenly spaced scores for the categories, like 1, 2, 3, . . . or 10, 20, . . . for
X. Another solution is to use midranks.
For example for the data in the previous table this would give scores

categories frequencies midrank
no 568 (568+1)/2=284.5

middle 1798 ((568+1) + (568+1798))/2=1467.5
heavy 3324 ((568+1798+1)+(568+1798+3324))/2=4028.5

In the case when using midranks then r is called Spearman’s ρ (or should it be called r) or Spearman’s
correlation.
For the example Spearman’s correlation=0.086 (M2=42.08, df = 1, P < 0.001). This is consistent
with the results using Pearson’s correlation, but the better choice because this statistic takes into
account that the data is ordinal and not numerical, and the scores are not dropping out of the sky,
but are based on the data.
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1.5.3 Kendall’s τ

Kendall’s τ − b (tau) is an alternative measure for the relationship between two ordinal measures
with the same number of outcomes (the contingency table is square). It is based on the number of
concordant and discordant observations in the sample.
A pair of observations, (xi, yi), (xj, yj), is called concordant if both xi < xj and yi < yj, or both
xi > xj and yi > yj.
A pair of observations, (xi, yi), (xj, yj), is called discordant if both xi < xj but yi > yj, or both
xi > xj but yi < yj.
Let nc be the number of concordant pairs, and nd the number of discordant pairs.
Then Kendall’s τ is

τ̂ = 2
nc − nd
n(n− 1)

Example 15

Tartar
Smoking none middle heavy Total

no 284 236 48 568
middle 606 983 209 1798
heavy 1028 1871 425 3324
Total 1918 3090 682 5690

Then

nc = 284(983 + 209 + 1871 + 425) + 236(209 + 425) + 606(1871 + 425) + 983(425) = 2, 949, 367

and

nd = 48(606 + 983 + 1028 + 1871) + 236(606 + 1028) + 209(1028 + 1871) + 983(1028) = 2, 217, 463

therefore
τ̂ = 0.045

The problem with τ is that it ignores the presence of ties. The measure Kendall’s τ−b is a modification
of Kendall’s τ accounting for ties applicable in square tables only, and Kendall’s τ − c generalizes
Kendall’s τ − b for non square tables. The interpretation remains the same.
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For this data Kendall’s τ − b is 0.080 (t=6.436, df=1, p <0.001).

1.5.4 2× J tables

In this case the trend test, tests if the median scores differ for the two groups (given by X), when
using the midrank scores this test is equivalent to the Wilcoxon Rank Sum Test (also called Mann-
Whitney Test) In Stat 252 we said this test is only applicable if there are not too many ties. One
has to be careful with the interpretation.

1.5.5 I × 2 tables

In this case the response has only two outcomes (success/failures), and the question is if the ordinal
variable has a positive or negative effect on the success rate of the response. In this case the test is
called the Cochran-Armitage trend test.

Warning: Do not use this test if one of the variables is nominal and has more than 2 categories. In
this case the test for trend is inappropriate.

1.6 Exact Tests (in Lab?)

1.7 Three Way Tables

For three categorical variables X, Y , and Z, where
Y - response variable
X - explanatory variable
Z - confounding variable (to be adjusted for)

Example 16
Y - response variable (cancer(yes, no))
X - explanatory variable (second hand smoking (none, some, lots))
Z - confounding variable (age(age groups))

One way of controlling for Z is by looking at tables for X and Y for each level of Z, called partial
tables.
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Example 17
Data from IMDb (January 11, 2011)
Y= rating for movies X = type of movie, horror(Alien) or animated movie (Wall-e), controlling for
Z=sex (age group).
Male

Rating
Movie 1-2 3-4 5-6 7-8 9-10 Total

Alien 1502 1404 7090 49158 77097 136251
Wall-e 5654 2261 8199 43116 94079 153309
Total 7156 3665 15289 92274 171176 289560

Female

Rating
Movie 1-2 3-4 5-6 7-8 9-10 Total

Alien 430 356 1313 5075 6777 13951
Wall-e 1104 441 1274 5998 19106 27923
Total 1534 797 2587 11073 25883 41874

The partial tables describe the conditional joint distribution of X and Y (conditional on the different
levels of Z).
Given that the rater was female the probability that a rater chose to rate Alien and rated it 9 or 10
equals 6777/41874.
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Ignoring Z entirely results in the marginal table for X and Y . To obtain the marginal table just add
the equivalent table entries of the partial tables.

Example 18

Rows: movie Columns: rating

12 34 56 78 910 All

Alien 1932 1760 8403 54233 83874 150202

Wall-e 6758 2702 9473 49114 113185 181232

All 8690 4462 17876 103347 197059 331434

Cell Contents -- Count

We can now use these tables to test for conditional independence and marginal independence.

Example 19
From SPSS:
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Test χ2 df P
conditional independence (female) 1793.102 4 < 0.001
conditional independence (male) 3778.475 4 < 0.001
marginal independence 4692.375 4 < 0.001

At significance level of 5% the data provide sufficient evidence for conditional association for men
and women, and marginal association of movies and rating.

We can also do conditional and marginal trend tests (I used scores 1,2,3,4,5 for the rating): Use
SPSS (1 = Alien, 2 = Wall-e) to find the correlations, and M2

0 = (r2(n− 1):

Test r M2
0 df P

trend (conditional female) 0.188 1480.0 1 < 0.001
trend (conditional male) -0.024 166.79 1 < 0.001
marginal trend -0.006 11.93 1 < 0.001

At significance level of 5% the data provide sufficient evidence that the median ratings for Alien and
Wall-e conditional for women and men and combined are not the same.
The sign of r indicates that the median rating by women for Wall-e is higher than for Alien, and
Alien is higher rated by men.
The marginal result indicates that the median rating for Alien is higher overall than for Wall-e. (We
are missing an important fact here. This result is due to the fact that men are much more likely to
give a rating on IMDb). These findings indicate that we have an interaction effect between sex and
movie on rating, an appropriate model should give us more insight.

In the case that the marginal and conditional distributions are 2 × 2 tables we also can look at
conditional and marginal odds ratios etc. (compare text book).

1.7.1 Simpson’s Paradox

In a paper by Charig et al. (British Medical Journal, Clinical Research Ed., March 1986, 292(6524):
879-882) two different treatments for kidney stones are compared. Call the treatments A and B.
It is reported that treatment A is successful for 78% of patients and treatment B is successful for
83% of patients. So one would assume that treatment B is ”better” than treatment A.
BUT they also report that for small kidney stones treatment A is successful for 93% of all cases, but
B only in 87% of all cases
and that for large kidney stones treatment A is successful for 73% of all cases, but B only in 69% of
all cases.
So treatment A is ”better” than treatment B?

Treatment A

Success No Success Total
small 81 6 87
large 192 71 263
Total 273 77 350

Treatment B

Success No Success Total
small 234 36 270
large 55 25 80
Total 289 61 350
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Treatment A is better than treatment B, because looking at the conditional distributions for treat-
ment and success, given the size, treatment A shows a higher success rate for small as well as large
kidney stones, i.e. 93% instead of 87%, and 73% instead of 69%.
How come, that overall treatment B seems to be the better treatment?
Both treatments are much more successful for small kidney stones than for large ones. Find that
the sample for treatment B mostly consists of small kidney stones, but the sample for treatment
A mostly consists of patients treated for large kidney stones, therefore showing a favourable overall
success rate for treatment B.
As a result the overall success rate for treatment B is closer to the success rate for small kidney stone
(looks good), but the overall success rate for treatment A is closer to the success rate for large kidney
stones (looks not as good).

1.7.2 Homogeneous association

We speak of an homogeneous association between X and Y controlling for Z, when the association
between X and Y is the same for all levels of Z. In ANOVA and multiple regression we said that X
and Z do not interact in their effect on Y .
For categorical data means that the odds ratios (for each combination of 2 levels from X and two
levels of Y ) are not affected by Z.
How to test for homogeneous association we see later after building models.

1.8 Cochran-Mantel-Haenzel Test

Assume three variables, X, Y, Z, all being binary. (This test can be done for Z non-binary)
Let ϑXY (k) denote the conditional odds ratio between X and Y , given Z = k.

Then a homogeneous relationship between X, Y and Z implies that

ϑXY (1) = ϑXY (2) = · · · = ϑXY (K)

We speak of conditional independence between X and Y , given Z, iff

ϑXY (1) = ϑXY (2) = · · · = ϑXY (K) = 1

Cochran-Mantel-Haenzel Test for conditional independence

1. H0 : ϑXY (1) = ϑXY (2) = · · · = ϑXY (K) = 1

Ha : at least one conditional OR is different from 1

2. large random sample

3.

χ2
0 =

(
∑

k n11k − µ̂11k)
2∑

k V ar(n11k)
, df = 1

with
V ar(n11k) =

n1+kn2+kn+1kn+2k

n2
++k(n++k − 1)
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4. P-value= P (χ2 > χ2
0)

Example 20
(Modified from example on Handbook of Biological Statistics)
McDonald and Siebenaller (1989) surveyed allele frequencies at the Lap locus in the mussel Mytilus
trossulus on the Oregon coast. At two estuaries (estuary = the tidal mouth of a large river, where
the tide meets the stream), they collected mussels from inside the estuary and from a marine habitat
outside the estuary. There were three common alleles and a couple of rare alleles; based on previous
results, the biologically interesting question was whether the Lap94 allele was less common inside
estuaries, so all the other alleles were pooled into ”non-94” class.
There are three nominal variables: allele (94 or non-94), habitat (marine or estuarine), and area
(Tillamook, Yaquina, Alsea, or Umpqua). The null hypothesis is that at each area, there is no
difference in the proportion of Lap94 alleles between the marine and estuarine habitats.
This table shows the number of 94 and non-94 alleles at each location. There is a smaller proportion
of 94 alleles in the estuarine location of each estuary when compared with the marine location; we
wanted to know whether this difference is significant.

Location Allele Marine Estuarine

Tillamook 94 56 69
non-94 40 77

Yaquina 94 61 257
non-94 57 301

To test wether the Lap94 allele was less common inside estuaries will test for conditional independence
between inside/outside estuary and Lap94 allele. If the test is significant, it indicates that the
proportion of Lap 94 is different inside and outside of estuaries, and since in the samples data they
are less common inside the estuaries, it would support the research hypothesis.

1. H0 : ϑXY (T ) = ϑXY (Y ) = 1

Ha : at least one conditional OR is different from 1

α = 0.05

2. Random samples have been collected and the samples are large enough (rule of thumb: at least
5 in each cell)

3.

V ar(n11T ) =
125× 117× 96× 146

2412(242− 1)
= 14.52

V ar(n11Y ) =
218× 358× 118× 558

6672(667− 1)
= 17.34

χ2 =
(
∑

k n11k − µ̂11k)
2∑

k V ar(n11k)
=

(56− (96× 125)/242)2 + (61− (118× 318)/667)2

14.52 + 17.34
=

41.13 + 22.49

31.86
= 1.997

df = 1

4. P-value= P (χ2 > 1.9972) = 0.16

5. The null hypothesis can not be rejected
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6. At significance level of 5% the data do not provide sufficient evidence that the proportion of
Lap94 alleles is different in the marine and estuarine locations. (Comment: The original study
included more locations, and together the data provided sufficient evidence that the proportions
are different)
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