
1 Models for Matched Pairs

Matched pairs occur when we analyse samples such that for each measurement in one of the samples
there is a measurement in the other sample that directly relates to the measurement in the first
sample.
Matched pairs typically occur when for example two measurements are taken for the same individual,
e.g. response before and after intervention.
If the measurements are categorical, a natural way to display such data would be a contingency table.

Example 1
For instance (this is an example from the online notes by Jason Newsom at Portland State University),
we might examine the favorability of voters for gun control legislation in April and in June.

June
Yes No Total

April Yes 110 10 120
No 100 80 180

Total 210 90 300

We now could ask if the opinions have changed from April to June. Then we are not interested to
test for independence, because if every participant kept their opinion all measurements would be in
the cells on the diagonal.
We also might want to compare the proportion of voters who agree with gun control in April and
June. For the distribution this would mean comparing πyes+ with π+yes.

In general: Let πij be the joint distribution of a 2× 2 table. Then the difference between π1+ and
π+1 is of interest. It is

π1+ − π+1 = π11 + π12 − (π11 + π21) = π12 − π21

Therefore in fact this becomes a question about the off diagonal entries. To answer if the marginal
distributions are equal we can check if π12 = π21.

1.1 McNemar Test

To test if π12 = π21 only the cell counts for those two cells are needed, and the relevant sample size
is n∗ = n12 + n21.
With this data we now test if the probability (to fall in cell 12, given it is either in cell 12 or 21) of a
binomial distribution is 0.5. Applying the Z-score for binomial distributions to this setting, we get

Z =
n12 − n∗(0.5)È
n∗(0.5)(0.5)

=
n12 − 0.5(n12 + n21)

0.5
√
n12 + n21

=
0.5n12 − 0.5n21

0.5
√
n12 + n21

=
n12 − n21√
n12 + n21

which is approximately standard normally distributed, if the true probability is 0.5.
The McNemar statistic χ2 = Z2 is therefore χ2-distributed with df = 1.
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To test if the marginal distributions are the same for paired samples with binary response:
McNemar Test

1. H0 : π12 − π21 = 0 or H0 : π1+ − π+1 = 0 versus H0 is not true. Choose α.

2. Random sample for the table, n12 + n21 ≥ 10.

3. Test Statistic

χ2
0 =

(n12 − n21)
2

n12 + n21

, df = 1

4. P-value = P (χ2 > χ2
0)

Example 2
Test if the proportion of people who support gun control has changed from April to June.

1. H0 : π12 − π21 = 0 versus H0 is not true. α = 0.05.

2. The data represents a random sample, and n12 + n21 = 110 ≥ 10.

3. Test Statistic

χ2
0 =

(90)2

110
= 73.6, df = 1

4. P-value = P (χ2 > 73.6) < 0.005

5. Reject H0.

6. At significance level of 5% the data provide sufficient evidence that the proportion of voters
who support gun control has changed.

1.2 Estimating the difference between two proportions based on paired
samples

In general a confidence interval is preferable over a test.
The confidence interval can be based on the difference in the sample proportions:

π̂i+ − π̂+i

which is an unbiased estimator for the true difference in the probabilities, s.t.

µπ̂i+−π̂+i
= πi+ − π+i

and has estimated standard deviation

SE =

s
π̂i+(1− π̂i+) + π̂+i(1− π̂+i)− 2(π̂11π̂22 − π̂12π̂21)

n

Rewriting the SE in terms of observed cell counts gives

SE =

È
(n12 + n21)− 2(n12 − n21)2/n

n
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McNemar Confidence Interval for πi+ − π+i

(π̂i+ − π̂+i)± zα/2

È
(n12 + n21)− 2(n12 − n21)2/n

n

Example 3
A 95% comfidence interval for the difference in the proportion of voters supporting gun control:

�
120

300
− 210

300

�
± 1.96

È
(10 + 100)− 2(10− 100)2/300

300

(0.4− 0.7)± 1.96

√
(110−54)

300

−0.3± 0.0489

[−0.3489,−0.2511]

We are 95% confident that the percentage of voters who support gun control increased between 25%
and 35% (based on a sample where the same people were asked in April and June).

1.3 Logistic Regression Models for Matched Pairs

1.3.1 Marginal Models

In a first step we will model the situation above.
Let Y1, Y2 be the random variables representing success/failure for observation 1 and observation
2, respectively, and xt is a dummy variable which is one for observation 1 (t = 1) and zero for
observation 2 (t = 2).
Now analyse the following model

logit(P (Yt = 1)) = α + βxt

Then

for t = 1 : logit(P (Y1 = 1)) = α + β

for t = 2 : logit(P (Y2 = 1)) = α

Which means that eβ is the odds ratio for success in observation 1 versus observation 2.

Example 4
From the data

Θ =
120/180

210/90
= 0.2856

The odds for support of gun control in April are 0.2856 times the odds in June, or the odds for
support of gun control in June are 1/0.2856=3.49 times the odds in April.
Fitting the model gives (inputting the data as if it would be independent, therefore the tests can not
be used)

logit(P(Yt=Yes)) =−0.405− 1.253xt with e−1.253 = 0.2856.
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The model
logit(P (Yt = 1)) = α + βxt

is called the marginal model because it models the marginal distribution of the response for the
paired observations.

1.3.2 Conditional models

These models are based on the perception that matched pairs data can be viewed as three way
contingency tables, one table for each individual in the sample.

Example 5
Assume the first individual in the sample was against gun control in April, but for it in June, then
the table for this individuals response would be:

Response
Time Yes No
April 0 1
June 1 0

How many of these tables would we need?

The kth table shows the responses Y1, Y2 for individual k, and the sample data is represented as a
2× 2× n table.
Models based on this perception of matched pairs are called conditional models, the tables are con-
ditioned on the individual, and permit that the probability distribution for the response is different
for each individual.

Notation: Let Yit be observation t for individual i (1 = success).

The conditional model:

logit(P (Yi1 = 1)) = αi + β, logit(P (Yi2 = 1)) = αi,

or
logit(P (Yit = 1)) = αi + βxit

with xi1 = 1, xi2 = 0.
The model implies a homogeneous relationship because the odds ratio for success for comparing
the two observations is eβ for all individuals. In the case β = 0, for each individual the odds
(probabilities) for success are the same for the two observations.
The odds (probabilities) for success can be different for individuals depending on αi.

To answer if the probabilities for success are different is equivalent to test within the conditional
model if β = 0.

The many parameters (n+1) in the model can cause difficulties with the estimation. One solution is
to consider conditional maximum likelihoods, where the conditional likelihood function is maximized,
by conditioning out the individual parameters. For this simple model this leads to the conditional
maximum likelihood estimator of exp(β̂) = n12/n21 from the original 2-way table.
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Example 6
The conditional maximum likelihood estimate for the odds ratio comparing the support for gun
control in April and June equals 10/100=0.10. The odds for support of gun control is in April 10%
of the odds in June.

This is very different from the 0.2856 we found using the marginal model, reflecting the difference
between marginal and conditional odds ratios.
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