1 Multicategory Logit Models

In this section we will introduce how the binary logistic regression model can be generalized to allow
modeling a response variable with more than two categories.
We will distinguish between models with nominal and ordinal response variables.

1.1 Nominal Response

Let J be the number of response categories for variable Y and ,...,7; be the probabilities for a
randomly chosen individual to fall into categories 1, ..., J, respectively. Then ) m; = 1.

Then the number of observations out of n independent observations falling into the different categories
have a multinomial distribution. (review first section).

When modeling a nominal response variable we are interested in finding if certain predictors have
an effect on the probabilities 7, ..., 7.

In a binary logistic regression model we model the odds for success, i.e. the probability of success
in relationship to the probability for failure. In multicategory logit models we model simultaneously
all relationships between probabilities for pairs of categories. This is done by modeling the odds of
falling within one category instead of another.

1.1.1 Baseline logits

In a similar way to which a multicategory predictor with a GLM uses dummy variables to compare
the first J — 1 categories with the last, the baseline category, multicategory logit models pair a
baseline category with all remaining categories.

Assume the last category (J) is the baseline category, then the baseline logits are

log(mi/my), i=1,2,...,J—1
The baseline category logit model with one predictor x is then
log(mi/my) = + Pz, 1=1,2,...,J—1

(for only two categories this is the binary logistic regression model.)

Observe that for each category ¢ compared with the baseline category, a new set of parameters is
introduced.

The baseline category logit model permits the comparison of any two categories since, for categories
a and b

o/ Ty

7Tb/7TJ> = log(ma/my) —log(my/m;) = (aa — ) + (Ba — Bp)x

log(ma/my) = log (

Software like SPSS fits these J — 1 model equations simultaneously, which results in smaller standard
errors for the parameter estimates than when fitting them separately.

The choice of baseline category has no effect on the parameter estimates for comparing two categories
a and b.

All the other formerly discussed concepts hold for this model.



Example 1

Contraceptive use in dependency on age (from G. Rodriguez, 2007, online notes)

The data has been taken of the report on the Demographic and Health Survey conducted in El
Salvador in 1985. The table shows 3165 currently married women classified by age, grouped in five-
year intervals, and current use of contraception, classified as sterilization, other methods, and no
method.

age * contra Crosstabulation

Count
contra
n 0 g Total
age 17.50 232 1 3 296
2280 400 137 80 617
27.50 301 131 216 648
3250 203 76 268 547
37.50 188 50 197 435
4250 164 24 150 338
47 50 183 10 91 284
Tatal 1671 4849 1005 3165
Chi-Square Tests
Asvmp. Sig.
WValue df (2-5ided)
Pearson Chi-Sguare 430.0284 12 .oon
Likelihood Ratio 21103 12 .noa
M of Valid Cases B4

a. 0 cells (. 0%) have expected countless than 5. The
minimum expected countis 43.88.
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The graph indicates that there is a quadratic (non linear) relationship between the log odds (for
sterilization versus none and other versus none) and age.
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First we will fit a linear model for the logits and age, a multicategory logistic regression model with
predictor age. The model equations are:

l0g<7TS/7Tn) = a5+ 536196,
lOg<7T0/7Tn) = Q,+ ﬁoagev

Second we will fit a quadratic model for the logits and age, a multicategory logistic regression model
with predictor age and age?. The model equations are:

log(ﬂ-s/ﬂ-n) = a5+ Blsage + B2sag€27
log(ﬂo/’frn) = Q,+ 6106196 + 520ag€2,

The SPSS output can be found in file ”"CONTRACEPTIVE.PDE”

As expected the linear model shows an unacceptable fit with Pearson x? = 268.17,df = 10 and
Deviance = 293.98,df = 10. Test for an effect are significant, but are meaningless because of the
bad fit by the model.

The quadratic model shows a marginally acceptable model fit with Pearson y? = 18.869, df = 8 and
Deviance = 20.475, df = 8. But the analysis of the standardized residuals shows an acceptable fit for
almost all cells and supports this model.

The model can be improved by including age® with the model, but this makes the model less parsi-
monious.

According to the Wald y? test both age and age? have a significant effect on the log odds for
sterilization versus none, other versus none, and sterilization versus other.

odds-ratio variable x? df P
sterilization - none age 243.22 1 <0.001
age? 21825 1 < 0.001
other - none age 3147 1 <0.001
age? 39.23 1 <0.001
sterilization - other age 54.79 1 < 0.001
age? 2824 1 <0.001

For getting the comparison between sterilization I reran the analysis with baseline category ”other”.
The estimated model equations are:

log(ms/m,) = —12.6+.710 age — 0.010 age?,
log(my/m,) = —4.5+ .264 age — 0.005 age?,

These are the curves shown in the graph above.
Then we can also find the following estimated model equation for sterilization versus other:

log(ms/my) = (—12.6 — (—4.5)) + (.710 — .264) age + (—0.010 — (—0.005)) age?,
= —8.1+ .446 age — 0.005 age?,

Interpretation: Since this a quadratic model the interpretation of the slopes is not as easy, because
the effect of an extra year in age depends on the age.



For example:
Given that the chosen contraceptive is either sterilization or none the odds that a woman
used sterilization at 26 is ¢f1(26-25)+62:(26"-25%) tieg the odds of a woman at age 25.

Because: Given that the chosen contraceptive is either sterilization or none

0dd$(25) — s tB1s25+P2:25°
odds(26) = Qs 81526+ 52526
Thus
0dd8(26)/0dd8(25) — s tB1526+82:26° —(ovs+ 515254525 25°)
_ oB1a(26-25) 462 (267-257)
=  eP1st+B2s(51)

P1(26-25)+524(26°-25%) — 1 29 92% increase from 25 to 26.

To test if a predictor x has an effect on the probabilities to fall with in the different categories, a test
based on the comparison of two models is applied with the y? statistics being the difference between
the log likelihood for the model without the predictor and the log likelihood for the model including
the predictor.

1. Hypotheses: Hy : x has no effect on 7y ... 7y versus H, : Hy is not true
2. Assumptions:

3. Test statistic: x> = —2(Lo — L), df = J — 1

Example 2
For the example this looks a little different because the model is quadratic. To test if age has an
effect on the choice of contraceptive we need to test:

1. Hy: Bis = Pas = Pro = P2, = 0 versus H, : at least one is different. o = 0.05
2.

3. X2 = —2(Ly — L;) = 500.628, df = 4 (page 5 from the output).

4. P-value< 0.001

5. Reject Hy, at significance level of 5% the data provide sufficient evidence that the age has an
effect on the choice of contraceptive.

1.1.2 Estimating response probabilities

The multicategory logistic regression model can also be rewritten to state the probabilities for the J
categories:

eocj-i—ﬁja:

szw, j:].,,J

The denominator is always the same and when adding the probabilities we get >~; 7; = 1.



Let b be the baseline category. We set the parameters o and 3, for the baseline category to 0. We
get:
odds ratio(b/b) = e ™7 = 0 =1

the only value that makes sense.
These equations can then be used to estimate the probabilities for the J categories in dependency
on the predictors, by replacing the parameters with their estimates.

Example 3
e—12.6+.710 age—0.010 age?
Te =
$ e—12.6+.710 age—0.010 age? + e—4.5+.264 age+-0.005 age? +1
e—4.5+.264 age+—0.005 age?
T, =
o e—12.6+.710 age—0.010 age? + e—4.5+.264 age+-0.005 age? +1
and ]
Ty =

e—12.6+.710 age—0.010 age? + ¢—4.5+.264 age+—0.005 age? +1

Using these equations for age = 22.5:
Fo= 13, 7, = .23, 7, = .64

To Based on the contingency tables we would estimate

for s: 80/617=0.129, o: 137/617=0.222, and n: 400/617=0.648.

This model has 6 parameters, the contingency table has (3 — 1) x (7 — 1) = 12 degrees of freedom.
Therefore the model needs a much smaller number of parameters to almost perfectly replicate the
estimated probabilities.

1.2 Ordinal Response

If the multicategory response is ordinal a model should be used which reflects the order of the
categories. A model taking the ordinal nature of the response variable into account should be easier
to interpret and tests have greater power.

Definition:

Assume that Y is an ordinal variable with categories 1,2, ..., .J, then the cumulative probability for
category j is the probability to fall at most into category j

P(ng):7Tl+"'—|—7Tj, j:172,...,J

It is
PY<1)<PY<2)<---<PY<J)=1
To model an ordinal response variable one models the cumulative response probabilities or cumulative

odds. In the model cumulative odds for the last category do not have to be modeled since the
cumulative probability for the highest category is always one (no category falls above).

Definition:
The cumulative logits are the logits for the cumulative probabilities

P<Y§j) >:log<7T1—|—'--—|—7Tj>
1—-P(Y <j) Tjt1+ -+ 7y

logit(P(Y <)) = log



1.2.1 Cumulative Logit Models

A model for cumulative logit j is equivalent to a binary logistic regression model for combined
categories 1 to j (I) versus the combined category j + 1 to J (II)

categories: 1 2 ... 5 7+1 ... J

1 11

For one predictor variable x the proportional odds model becomes for j =1,2...,J — 1:
logit(P(Y < j)) = a; + Bz

The slope f is the same for all cumulative logits, and therefore this model has a single slope parameter
instead of J — 1 in the multicategory logistic regression model.

The parameter  describes the effect of x on the odds for falling into categories 1 to j. The effect is
assumed to be the same for all cumulative odds.

The cumulative probabilities in dependency on predictor variable x if 5 > 0.

Using that
P(Y =j)=P(Y <))~ P(Y <j—-1)

We can obtain from the curves shown above the probabilities to fall within category j in dependency
on x.
DIAGRAM!!(pg.181 in the text book)
If 5 > 0 then the probability to fall into a lower category increases with increasing x.
This is against the usual interpretation, positive slope is associated with a positive correlation.
For this reason SPSS models
logit(P(Y < j)) = a;—f

and reports the negative of the slope. Be very careful!!

Example 4
High school and beyond



The ordinal response we are considering is the SES. We include gender, math, writing, and race as
predictors.
The model equation for j =1, 2:

logit(P(Y < j)) = a; + fimath + Sowriting + fsgender + [Gyirace; + Syoraces + [ygraces
First check if there are no empty cell when cross tabulating the predictors with the response.

ses * sex Crosstabulation

Count
SEH
1.00 2.00 Tatal
5es 1.00 50 a4 139
2.00 144 165 294
3.00 79 83 162
Total 273 327 600

ses * race Crosstabulation

Count
I'3CE
1.00 2.00 300 400 Total
ses  1.00 73 B 24 T 139
200 4 14 24 237 209
300 14 12 10 126 162
Total 71 34 58 437 (il

Based on these contingency tables we do not have to be concerned because of empty or ”small” cells.
Running the Ordinal Logistic Regression provides the following output:

Model Fitting Information

-2 Log
model Likelihood | Chi-Square df Sig.
Intercept Only 1221.074
Final 1148593 72482 ] ono

Link function: Logit.

Goodness-of-Fit
Pseudo R-Square

Chi-Sguare df Sin. Coxand Snell 114
Fearson 1148.222 1138 A10 Magelkerke 130
Deviance 1125.438 1138 54 Mckadden 058

3 : ; Link function: Logit.
Link function: Logit. ?

From the first table we can see that the model including the predictors fits significantly better than
the model omitting all predictors (x* = 72.482,df = 6,p < 0.001).

From the second table we find that the Pearson x? = 1148.222, df = 1138 and deviance= 1125.438, df =
1138 both indicating good fit.



The third table report pseudo R? values. Using Nagelkerke=0.13, we get the impression that this
model fits well, but we should not rely on it for predictions.

Parameter Estimates

45% Confidence Interval
Estimate Std. Error Wald df Sig. Lower Bound | Upper Bound
Threshold  [ses=1.00] 2.509 555 20,422 1 .00o 1.421 3587
[ges=2.00] 4.927 A8T T0.497 1 .00o 3T B.0O77
Location math 043 012 141321 1 .00o 021 0EB
wiriting 027 011 5833 1 016 005 043
[sex=1.00] 458 A70 7.210 1 007 123 788
[sex=2.00] na : : 1] : , ,
[race=1.00] =143 255 314 1 5745 -.644 387
[race=2.00] - 151 345 1493 1 BEO -827 A24
[race=3.00] - 478 279 2910 1 088 -1.024 a7
[race=4.00] na 1]

Link function: Logit.
4. This parameter is setto zero hecause itis redundant.

The threshold values are usually not interpreted, they represent the cutpoints in the linear predictor
for the different categories when the predictors are all 0. For the example the value of 2.509 is to
differentiate low SES values from middle and high.

From the estimates table we learn that the results on the math test and writing test are significant
predictors for the SES of a student (math: x? = 14.121,df = 1,p < 0.001, writing: x* = 5.833,df =
1,p < 0.016).

The interpretation of the parameter estimates give: A one point increase in the math test results
in an increase in the ordered log-odds of being in a higher ses category by 0.043 while the other
variables in the model are held constant. €%%4 = 1.044, therefore a one point increase in the math
test increase your chance being in a higher SES category by 4.4%.

We also learn that race has no significant effect, but gender does on the odds being of a higher SES.

The results in this table hold if it is reasonable to assume that the slope for the cumulative log odds
are all the same, i.e. the S-curves are truly parallel which means that changes for falling into a higher
SES is equally affected by the predictor variables for all categories.

If this is a reasonable assumption can be tested:



Test of Parallel Lines=

-2 Log
Madel Likelihood Chi-Sguare df Sid.
Mull Hypothesis 1148.593
General 1142142 G450 G aTA

The null hypothesis states thatthe location parameters (slope
coefliicients) are the same across response categories.

a. Link function: Logit.

The test is based on the likelihood ratio statistic for comparing the loglikelihoods for the model with
equal effect and the more general model without this requirement.

Here the null hypothesis that the lines are parallel and the effect is the same for all categories can
not be rejected (x~6.450,df = 6,p = .375) which supports the model above model, but remember
that we do not know the error probability for this decision.

ses * Predicted Response Category Crosstabulation

Count
FPredicted Response Category
1.00 2.00 2.00 Total
1-1 1.00 18 17 4 139
2.00 10 258 30 2049
.00 7 13 24 162
Tatal 348 a0y a8 goo0

The prediction table would be perfect if all measurement would fall onto the diagonal of the prediction
table. This table supports what has been said before, that this model is not very powerful for
predicting the SES of an individual.



