
1 Multicategory Logit Models

In this section we will introduce how the binary logistic regression model can be generalized to allow
modeling a response variable with more than two categories.
We will distinguish between models with nominal and ordinal response variables.

1.1 Nominal Response

Let J be the number of response categories for variable Y and π1, . . . , πJ be the probabilities for a
randomly chosen individual to fall into categories 1, . . . , J , respectively. Then

P
πi = 1.

Then the number of observations out of n independent observations falling into the different categories
have a multinomial distribution. (review first section).

When modeling a nominal response variable we are interested in finding if certain predictors have
an effect on the probabilities π1, . . . , πJ .
In a binary logistic regression model we model the odds for success, i.e. the probability of success
in relationship to the probability for failure. In multicategory logit models we model simultaneously
all relationships between probabilities for pairs of categories. This is done by modeling the odds of
falling within one category instead of another.

1.1.1 Baseline logits

In a similar way to which a multicategory predictor with a GLM uses dummy variables to compare
the first J − 1 categories with the last, the baseline category, multicategory logit models pair a
baseline category with all remaining categories.
Assume the last category (J) is the baseline category, then the baseline logits are

log(πi/πJ), i = 1, 2, . . . , J − 1

The baseline category logit model with one predictor x is then

log(πi/πJ) = αi + βix, i = 1, 2, . . . , J − 1

(for only two categories this is the binary logistic regression model.)
Observe that for each category i compared with the baseline category, a new set of parameters is
introduced.
The baseline category logit model permits the comparison of any two categories since, for categories
a and b

log(πa/πb) = log

�
πa/πJ
πb/πJ

�
= log(πa/πJ) − log(πb/πJ) = (αa − αb) + (βa − βb)x

Software like SPSS fits these J−1 model equations simultaneously, which results in smaller standard
errors for the parameter estimates than when fitting them separately.
The choice of baseline category has no effect on the parameter estimates for comparing two categories
a and b.

All the other formerly discussed concepts hold for this model.
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Example 1
Contraceptive use in dependency on age (from G. Rodriguez, 2007, online notes)
The data has been taken of the report on the Demographic and Health Survey conducted in El
Salvador in 1985. The table shows 3165 currently married women classified by age, grouped in five-
year intervals, and current use of contraception, classified as sterilization, other methods, and no
method.

The graph indicates that there is a quadratic (non linear) relationship between the log odds (for
sterilization versus none and other versus none) and age.
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First we will fit a linear model for the logits and age, a multicategory logistic regression model with
predictor age. The model equations are:

log(πs/πn) = αs + βsage,
log(πo/πn) = αo + βoage,

Second we will fit a quadratic model for the logits and age, a multicategory logistic regression model
with predictor age and age2. The model equations are:

log(πs/πn) = αs + β1sage+ β2sage
2,

log(πo/πn) = αo + β1oage+ β2oage
2,

The SPSS output can be found in file ”CONTRACEPTIVE.PDF”
As expected the linear model shows an unacceptable fit with Pearson χ2 = 268.17, df = 10 and
Deviance = 293.98, df = 10. Test for an effect are significant, but are meaningless because of the
bad fit by the model.

The quadratic model shows a marginally acceptable model fit with Pearson χ2 = 18.869, df = 8 and
Deviance = 20.475, df = 8. But the analysis of the standardized residuals shows an acceptable fit for
almost all cells and supports this model.
The model can be improved by including age3 with the model, but this makes the model less parsi-
monious.
According to the Wald χ2 test both age and age2 have a significant effect on the log odds for
sterilization versus none, other versus none, and sterilization versus other.

odds-ratio variable χ2 df P
sterilization - none age 243.22 1 < 0.001

age2 218.25 1 < 0.001
other - none age 31.47 1 < 0.001

age2 39.23 1 < 0.001
sterilization - other age 54.79 1 < 0.001

age2 28.24 1 < 0.001

For getting the comparison between sterilization I reran the analysis with baseline category ”other”.
The estimated model equations are:

log(πs/πn) = −12.6 + .710 age− 0.010 age2,
log(πo/πn) = −4.5 + .264 age− 0.005 age2,

These are the curves shown in the graph above.
Then we can also find the following estimated model equation for sterilization versus other:

log(πs/πo) = (−12.6 − (−4.5)) + (.710 − .264) age+ (−0.010 − (−0.005)) age2,
= −8.1 + .446 age− 0.005 age2,

Interpretation: Since this a quadratic model the interpretation of the slopes is not as easy, because
the effect of an extra year in age depends on the age.
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For example:
Given that the chosen contraceptive is either sterilization or none the odds that a woman
used sterilization at 26 is eβ1s(26−25)+β2s(262−252) times the odds of a woman at age 25.

Because: Given that the chosen contraceptive is either sterilization or none

odds(25) = eαs+β1s25+β2s252

odds(26) = eαs+β1s26+β2s262

Thus

odds(26)/odds(25) = eαs+β1s26+β2s262−(αs+β1s25+β2s252)

= eβ1s(26−25)+β2s(262−252)

= eβ1s+β2s(51)

eβ1s(26−25)+β2s(262−252) = 1.22, 22% increase from 25 to 26.

To test if a predictor x has an effect on the probabilities to fall with in the different categories, a test
based on the comparison of two models is applied with the χ2 statistics being the difference between
the log likelihood for the model without the predictor and the log likelihood for the model including
the predictor.

1. Hypotheses: H0 : x has no effect on π1 . . . πJ versus Ha : H0 is not true

2. Assumptions:

3. Test statistic: χ2 = −2(L0 − L1), df = J − 1

Example 2
For the example this looks a little different because the model is quadratic. To test if age has an
effect on the choice of contraceptive we need to test:

1. H0 : β1s = β2s = β1o = β2o = 0 versus Ha : at least one is different. α = 0.05

2.

3. χ2
0 = −2(L0 − L1) = 500.628, df = 4 (page 5 from the output).

4. P-value< 0.001

5. Reject H0, at significance level of 5% the data provide sufficient evidence that the age has an
effect on the choice of contraceptive.

1.1.2 Estimating response probabilities

The multicategory logistic regression model can also be rewritten to state the probabilities for the J
categories:

πj =
eαj+βjxP
eαh+βhx

, j = 1, . . . , J

The denominator is always the same and when adding the probabilities we get
P
j πj = 1.

4



Let b be the baseline category. We set the parameters αb and βb for the baseline category to 0. We
get:

odds ratio(b/b) = eαb+βbx = e0 = 1

the only value that makes sense.
These equations can then be used to estimate the probabilities for the J categories in dependency
on the predictors, by replacing the parameters with their estimates.

Example 3

π̂s =
e−12.6+.710 age−0.010 age2

e−12.6+.710 age−0.010 age2 + e−4.5+.264 age+−0.005 age2 + 1

π̂o =
e−4.5+.264 age+−0.005 age2

e−12.6+.710 age−0.010 age2 + e−4.5+.264 age+−0.005 age2 + 1

and

π̂n =
1

e−12.6+.710 age−0.010 age2 + e−4.5+.264 age+−0.005 age2 + 1

Using these equations for age = 22.5:

π̂s = .13, π̂o = .23, π̂n = .64

To Based on the contingency tables we would estimate
for s: 80/617=0.129, o: 137/617=0.222, and n: 400/617=0.648.
This model has 6 parameters, the contingency table has (3 − 1) × (7 − 1) = 12 degrees of freedom.
Therefore the model needs a much smaller number of parameters to almost perfectly replicate the
estimated probabilities.

1.2 Ordinal Response

If the multicategory response is ordinal a model should be used which reflects the order of the
categories. A model taking the ordinal nature of the response variable into account should be easier
to interpret and tests have greater power.
Definition:
Assume that Y is an ordinal variable with categories 1, 2, . . . , J , then the cumulative probability for
category j is the probability to fall at most into category j

P (Y ≤ j) = π1 + · · · + πj, j = 1, 2, . . . , J

It is
P (Y ≤ 1) ≤ P (Y ≤ 2) ≤ · · · ≤ P (Y ≤ J) = 1

To model an ordinal response variable one models the cumulative response probabilities or cumulative
odds. In the model cumulative odds for the last category do not have to be modeled since the
cumulative probability for the highest category is always one (no category falls above).

Definition:
The cumulative logits are the logits for the cumulative probabilities

logit(P (Y ≤ j)) = log

�
P (Y ≤ j)

1 − P (Y ≤ j)

�
= log

�
π1 + · · · + πj
πj+1 + · · · + πJ

�

5



1.2.1 Cumulative Logit Models

A model for cumulative logit j is equivalent to a binary logistic regression model for combined
categories 1 to j (I) versus the combined category j + 1 to J (II)

categories: 1 2 . . . j| {z }
I

j + 1 . . . J| {z }
II

For one predictor variable x the proportional odds model becomes for j = 1, 2 . . . , J − 1:

logit(P (Y ≤ j)) = αj + βx

The slope β is the same for all cumulative logits, and therefore this model has a single slope parameter
instead of J − 1 in the multicategory logistic regression model.
The parameter β describes the effect of x on the odds for falling into categories 1 to j. The effect is
assumed to be the same for all cumulative odds.

The cumulative probabilities in dependency on predictor variable x if β > 0.

Using that
P (Y = j) = P (Y ≤ j) − P (Y ≤ j − 1)

We can obtain from the curves shown above the probabilities to fall within category j in dependency
on x.
DIAGRAM!!(pg.181 in the text book)
If β > 0 then the probability to fall into a lower category increases with increasing x.
This is against the usual interpretation, positive slope is associated with a positive correlation.
For this reason SPSS models

logit(P (Y ≤ j)) = αj−βx

and reports the negative of the slope. Be very careful!!

Example 4
High school and beyond
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The ordinal response we are considering is the SES. We include gender, math, writing, and race as
predictors.
The model equation for j = 1, 2:

logit(P (Y ≤ j)) = αj + β1math + β2writing + β3gender + β41race1 + β42race2 + β43race3

First check if there are no empty cell when cross tabulating the predictors with the response.

Based on these contingency tables we do not have to be concerned because of empty or ”small” cells.
Running the Ordinal Logistic Regression provides the following output:

From the first table we can see that the model including the predictors fits significantly better than
the model omitting all predictors (χ2 = 72.482, df = 6, p < 0.001).

From the second table we find that the Pearson χ2 = 1148.222, df = 1138 and deviance= 1125.438, df =
1138 both indicating good fit.
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The third table report pseudo R2 values. Using Nagelkerke=0.13, we get the impression that this
model fits well, but we should not rely on it for predictions.

The threshold values are usually not interpreted, they represent the cutpoints in the linear predictor
for the different categories when the predictors are all 0. For the example the value of 2.509 is to
differentiate low SES values from middle and high.

From the estimates table we learn that the results on the math test and writing test are significant
predictors for the SES of a student (math: χ2 = 14.121, df = 1, p < 0.001, writing: χ2 = 5.833, df =
1, p < 0.016).
The interpretation of the parameter estimates give: A one point increase in the math test results
in an increase in the ordered log-odds of being in a higher ses category by 0.043 while the other
variables in the model are held constant. e0.043 = 1.044, therefore a one point increase in the math
test increase your chance being in a higher SES category by 4.4%.

We also learn that race has no significant effect, but gender does on the odds being of a higher SES.

The results in this table hold if it is reasonable to assume that the slope for the cumulative log odds
are all the same, i.e. the S-curves are truly parallel which means that changes for falling into a higher
SES is equally affected by the predictor variables for all categories.
If this is a reasonable assumption can be tested:
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The test is based on the likelihood ratio statistic for comparing the loglikelihoods for the model with
equal effect and the more general model without this requirement.
Here the null hypothesis that the lines are parallel and the effect is the same for all categories can
not be rejected (χ=6.450, df = 6, p = .375) which supports the model above model, but remember
that we do not know the error probability for this decision.

The prediction table would be perfect if all measurement would fall onto the diagonal of the prediction
table. This table supports what has been said before, that this model is not very powerful for
predicting the SES of an individual.
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