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1 Loglinear Models for Contingency Tables

As introduced before the loglinear model is a GLM with link function g(µ) = log(µ), a Poisson
random component and the linear predictor as systematic component.
We used the loglinear model for modeling count data.
In this section we will apply this model to count data in contingency tables, here the response
variable is the count and the predictors are the categorical variables defining the contingency table.
This model is used to investigate the interaction structure between the set of categorical variables of
interest. In contrast the logistic regression model was used to model a categorical response variable
in dependency on predictor variables (which of course could be categorical).

1.1 Loglinear models for 2-way tables

1.1.1 Independence Model

Consider two categorical variables with I and J categories, respectively, then {πij} is the joint
distribution of the two categorical variables, and if the two variables are independent then

πij = πi+π+j, i = 1, . . . , I, j = 1, . . . , J

The joint distribution are the parameters of a multinomial distribution, but when considering the
expected cell count {µij} = {nπij}, we can model these using a loglinear model, where the two
categorical variables are independent if

µij = nπi+π+j, i = 1, . . . , I, j = 1, . . . , J

taking the logarithm to both sides gives

log(µij) = log(n) + log(πi+) + log(π+j), i = 1, . . . , I, j = 1, . . . , J

Therefore the log of the expected cell counts are linear in effects by the categories of the two cate-
gorical variables.
Write

log(µij) = λ+ λXi + λYj , i = 1, . . . , I, j = 1, . . . , J

This model is called the loglinear model of independence, because it only fits if the two variables X
and Y are independent.

� λ is the intercept (independent from X and Y and needs to be included in the model to ensure
model that

∑
ij µij = n (λ = log(n).

� λXi is the (main or marginal) effect of category i of variable X on the log of the expected cell
count. The larger λXi the larger the expected frequency for row i.

� λYj is the (main or marginal) effect of category j of variable Y on the log of the expected cell
count. The larger λYj the larger the expected frequency for column j.

To test if two variables are independent can now be based on the model fit statistics for this model.
The two statistics to be used are Pearson’s χ2 or the likelihood ratio statistic, which match the χ2

test statistics for the test of independence for two-way tables.
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Example 1
Movie rating of Alien versus Wall-e.

At significance level of 5% the data provide sufficient evidence that the rating is not independent
from the movie (Wall-e versus Alien) (Pearson χ2 = 4692.4, df = 4, P < 0.001, or likelihood ratio=
4823.1, df = 4, P < 0.001).
We reject the model and find it not to be a good fit for the population.

Example 2
Many nursing students take STAT 151 online because they struggle to fit the course into their
otherwise busy studyplan. Does taking the course f2f or online have an effect on passing STAT 151?
Of a random sample of 160 nursing students

� 90 took STAT 151 online, of which 20 failed

� 60 took STAT 151 f2f, of which 11 failed

A test for independence results in χ2(1) = 1.07 and P-value = 0.30. Indicating that at significance
level of 5% there is insufficient evidence that the rate of success in STAT 151 depends on the mode
of delivery.
So the loglinear model of independence should provide a good fit for the data. The four model
equations are:

log(µf2f,no) = λ+ λMode
f2f + λPassno ,

log(µf2f,yes) = λ+ λMode
f2f + λPassyes ,

log(µonline,no) = λ+ λMode
online + λPassno ,

log(µonline,yes) = λ+ λMode
online + λPassyes ,

Parameter estimates (from SPSS) are:

λ̂ = 2.518, λ̂Mode
online = .405, λ̂Mode

f2f = 0, λ̂Passyes = 1.345, λ̂Passno = 0

Comments:

� For one category of row and column variable the parameter estimate is set to 0. This is similar
to modelling categorical variables through dummy variables, one category is chosen as the
reference level and is assigned a parameter value of 0.

� Since more students took the course online: λ̂Mode
online > λ̂Mode

f2f , and

since more students passed than faile: λ̂Passyes > λ̂Passno ,
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Interpretation of the parameters in the loglinear model of independence

To understand the interpretation of the parameters calculate the conditional log odds,
log(θ(i1, i2|Y = j)) for falling into category X = i1 versus X = i2, when Y = j. (Since we assume
that X and Y are independent this odds ratio should be the same for all j)

j

i1 πi1j
i2 πi2j

log(θ(i1, i2|Y = j)) = log

�
πi1j
πi2j

�
= log

�
nπi1j
nπi2j

�
= log

�
µi1j
µi2j

�

= log(µi1j)− log(µi2j)

= λ+ λXi1 + λYj − (λ+ λXi2 + λYj )

= λXi1 − λ
X
i2

Important conclusions for the loglinear model of independence:

� it has been confirmed that the conditional log odds for levels of X do not depend on j (which
we should have expected when X and Y are independent)

� the odds for falling into category i1 versus i2 equals eλ
X
i1
−λXi2 for all j, which means that in this

model
λXi1 − λ

X
i2

= log(P (X = i1)/P (X = i2))

the logarithm of the relative risk of category i1 versus category i2 in variable X,

or eλ
X
i1
−λXi2 are the odds to fall within category i1, given the individual falls either into category

i1 or i2.

Comment: One of the parameters λX1 , . . . , λ
X
I is redundant (same for Y ), because total expected

cell count adds to n. Usually the parameter value for one category is set to zero, which turns that
category into the reference category. This is similar to using one less dummy variable than levels of
the categorical predictor to be included with a model.
The purpose of this discussion was to illustrate that when we assume that the model of independence
describes the population we can confirm that the properties we know about independent variables
hold.

1.1.2 Saturated Model

Many times the variables under consideration are not independent (e.g. movie example), in which
case the appropriate model includes the interaction.

log(µij) = λ+ λXi + λYj + λXYij , i = 1, . . . , I, j = 1, . . . , J

is called the saturated model for a two-way contingency table.
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� The conditional log odds for falling into category X = i1 versus X = i2, when Y = j is for the
saturated model

log(θ(i1, i2|Y = j)) = λXi1 + λXYi1j − λ
X
i2
− λXYi2j

and depends for this model on the level of Y , reflecting, that X and Y are not independent
anymore. The level of Y affects the probabilities for the different levels of X (i.e. the likelihood
of each rating level depends on the movie that is being evaluated).

The calculations are similar to the one for the independence model, only use the model equation
for the saturated model.

� λXYij is the interaction effect of category i and category j on the expected cell count. It measures
the association between X and Y , and the degree of deviation from independence for the level
of the categorical variables.

� for a 2× 2 contingency table the log odds ratio equals

log(θ) = log

�
µ11µ22

µ12µ21

�

= log(µ11) + log(µ22)− log(µ12)− log(µ21)

= (λ+ λX1 + λY1 + λXY11 ) + (λ+ λX2 + λY2 + λXY22 )

−(λ+ λX1 + λY2 + λXY12 )− (λ+ λX2 + λY1 + λXY21 )

= λXY11 + λXY22 − λXY12 − λXY21

The odds ratio only depends on the interaction terms. But if the interaction terms are all zero
(independent X and Y ) then the log(odds ratio) is 0, therefore the odds ratio 1, indicating
independence.

Similar to ANOVA model in I×J tables we only need (I−1)×(J−1) interaction terms. (Interaction
between each pair of dummies for X and Y ).

Comment: The number of parameters in the saturated model is equal to the number of cells,
therefore this model gives a perfect fit for any sample. Usually this is not the goal because we try
to find out if a smaller set of parameters provides a more parsimonious model which describes the
population already well, rather than “coding” each measurement.

Example 3
Fitting the saturated model to the data on X = rating and Y = movie results in a perfect fit which
is reflected by all residuals being 0.
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The observed are the same as the expected counts.

When reproducing the output with SPSS, one finds that for example

λ̂XY12,Alien = −0.952, with e−0.952 = 0.39,

λ̂XY12,Wall−e = 0,

λ̂XY910,Alien = 0, and

λ̂XY910,Wall−e = 0

Therefore, we estimate that the odds ratio for 1,2 versus 9,10 and Alien versus Wall-e is OR =
e−0.952+0−0−0 = 0.39.
The odds for a rating of 1,2 versus a rating of 9,10 is 61% lower for Alien than for Wall-e. (61%=100%
-39%)
This is the same result we get, if we use the numbers from the contingency table to directly calculate
the OR. This is not surprising since we are using the saturated model, which reproduces the data
perfectly.

1.2 Loglinear Models of 3-way Tables

We now consider three categorical variables, X, Y, Z, at I, J,K levels respectively.
Recall that the purpose of studying loglinear models for contingency tables is to study the association
pattern of the variables creating the table.
In this section we will present different models implying different degrees of association and inde-
pendence. In statistics we are then using sample data to choose between these models the most
parsimonious one which is a good description of the population. The dependency structure implied
by the chosen model then informs us how the variables studied relate to each other. To under-
stand the dependency structure for each model the implications for the conditional odds ratios are
presented,
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The saturated model for a three-way table includes the intercept, main effects, two-way interaction
and three way interaction terms:

log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik + λY Zjk + λXY Zijk , i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K

As for two-way tables, the saturated model has the same number of parameters as observed cell
counts and always will fit the data perfectly.
The odds ratios describing the relationship between two of the variables can be different for the
different levels of the third variable.

Example 4
Movie - rating - gender:
Male

Rating

Movie 1-2 3-4 5-6 7-8 9-10 Total

Alien 1502 1404 7090 49158 77097 136251

Wall-é 5654 2261 8199 43116 94079 153309

Total 7156 3665 15289 92274 171176 289560

Female

Rating

Movie 1-2 3-4 5-6 7-8 9-10 Total

Alien 430 356 1313 5075 6777 13951

Wall-é 1104 441 1274 5998 19106 27923

Total 1534 797 2587 11073 25883 41874

Fitting the saturated model will result in estimates perfectly match the data and all residuals are
zero again.
The table shows the top of the following table provides some estimates for this model:
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Not all of the 20 ( 2× 5× 2 = 20 ) model parameters are shown in this table.

Omission of any of the terms from the saturated model will constitute a more parsimonious model.
If a more parsimonious model“fits as well” as the saturated model, we learn that less parameters
capture the dependency structure between the variables, and interpret the degree of independence
implied.

As a general rule in model building: If a higher order term is included with the model all lower
order terms for the variables involved should be included with the model. The eligible models are
then hierarchical or nested within each other.

1.2.1 Models of Interest

1. Saturated Model (see above)

2. Homogeneous Model

log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik + λY Zjk , i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K

only omit the three-way interaction term, therefore implying that the association between each
pair of variables is the same at all levels of the third variable. This is called a homogeneous
relationship.

The homogeneous model implies that all odds ratios describing the relationship between two
of the variables are the same at all levels of the third. This means, that there might be a
relationship between each pair of variables,, but that the relationship is the same at all levels
of the third variable, i.e. the third variable does not affect the relation ship between the other
two.
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Example 5
If the relationship between rating of movies, gender, and movie would be homogeneous it would
mean that (for example) the relationship between rating and movie is the same for both genders.
I.e. the rating of the movies might be different, but male and female raters rated them the
same way.

To test if the relationship is homogeneous test the model fit of the following model

log(µijk) = λ+ λGenderi + λRatej + λMovie
k + λRateMovie

jk + λGenderMovie
ik + λGenderRateij ,

i = 1, 2, j = 1, . . . , 5, k = 1, 2

For the Loglinear model the deviance (or Pearson’s χ2) compare the proposed model with the
saturated model. The “loglinear model” user interface in SPSS calls the deviance likelihood
ratio statistic.

H0 : λXY Zijk = 0 for all i, j, k in the saturated model.

At significance level of 5% the data provide sufficient evidence (Pearson χ2 = 1162.3, df =
4, P < 0.001, or deviance= 1121.3, df = 4, P < 0.001) to reject that the threeway interac-
tion terms are all 0, and find that the relationship between gender, rating, and movie is not
homogeneous.

It is concluded that the relationship between movie and rating depends on the gender of the
rater. To illustrate, we can find from the contingency table, that

OR(rating 1 versus 5 | male)=
1502(94079)

5654(77097)
= 0.32, and

OR(rating 1 versus 5 | female)=
430(19106)

1104(6777)
= 1.09.

The odds to rate Alien 1-2 rather than 9-10 is for male raters 68% lower for Alien than for
Wall-é, but the same odds are for female 10% higher for Alien than for Wall-é. Illustrating the
non-homogeneous relationship.

3. Model of Conditional Independence:

log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik , i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K
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For this model remove the three-way interaction and the two-way interaction term for Y and
Z from the saturated model. Which means that the model implies a homogeneous relationship
between X, Y, and Z, and that Y and Z are independent conditioned under X, i.e. the
relationship between Y and Z vanishes when keeping the level of X constant.

The homogeneous model implied that the odds ratio for every choice of two categories from Y
and from Z is the same for all levels of X, the conditional independence now means that these
odds ratios are one.

Example 6
This example illustrates the process of testing for conditional independence. We already know
from the previous result, that the relationship between movie, gender, and rating is not homo-
geneous, so it can also not be conditional independent on any of the variables.

To test if the relationship between rating and the raters gender is conditionally independent
from movie, i.e. for each movie gender and rating are independent, i.e. each movie is rated the
same by male and female raters, test the model fit for

log(µijk) = λ+λGenderi +λRatej +λMovie
k +λRateMovie

ij +λGenderMovie
ik , i = 1, 2, j = 1, . . . , 5, k = 1, 2

This table gives the information for testing H0 : λRateGenderjk = λRateGenderMovie
ijk = 0 in the

saturated model.

At significance level of 5% the data provide sufficient evidence (Pearson χ2 = 1788.9, df =
8, P < 0.001, or deviance= 1599.9, df = 8, P < 0.001) that gender and rating are not indepen-
dent for both movies, i.e. female and male raters do not rate both movies the same.

One should have been able to predict this result from the previous test. Since the relationship
is not homogeneous each pair of two variables can not be conditionally independent.

If the model would have been found to be homogeneous, one should test for conditional inde-
pendence of each pair of variables, (gender, rating), (gender, movie), and (rating, movie).

4. The Independence Model

log(µijk) = λ+ λXi + λYj + λZk , i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K

implies that the variables X, Y and Z are all independent. Therefore all odds ratios imaginable
are 1.
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1.2.2 Process: Loglinear Regression Analysis of three way tables:

1. test if the relationship is homogeneous,
if not stop, otherwise continue with step 2

2. test for conditional independence for each pair of variables,
if more than one pair is conditionally independent, fit model removing the two-way interaction
terms for all those pairs and test model fit. If all pairs are conditionally independent continue
with step 3.

3. test for independence of all three variables.

Instead of always comparing with the saturated model it is meaningful to test for conditional in-
dependence in an homogeneous model, i.e. to test H0 : λXYij = 0 . For this test one would use as
test statistic the difference in the log likelihood ratio (deviance) for the homogeneous model and the
model implying conditional independence for X and Y .

1.2.3 Estimating odds ratios

Assume the saturated model holds true:

log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik + λY Zjk + λXY Zijk , i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K

with X=Rating Y=Movie Z=Gender. The odds ratio for rating a movie 7,8 (code=4) rather than
9,10 (code=5) comparing female with male raters for Movie=Wall-e

log(odds) = log(
µ4Wfµ5Wm

µ5Wfµ4Wm
)

= log µ4Wf + log µ5Wm − log µ5Wf − log µ4Wm

= λ+ λX4 + λYW + λZf + λXY4W + λXZ4f + λY ZWf + λXY Z4Wf

+λ+ λX5 + λYW + λZm + λXY5W + λXZ5m + λY ZWm + λXY Z5Wm

−λ− λX5 − λYW − λZf − λXY5W − λXZ5f − λY ZWf − λXY Z5Wf

−λ− λX4 − λYW − λZm − λXY4W − λXZ4m − λY ZWm − λXY Z4Wm

= λXZ4f + λXZ5m − λXZ5f − λXZ4m + λXY Z4Wf + λXY Z5Wm − λXY Z5Wf − λXY Z4Wm

This is estimated to be

log(Ôodds) = log µ̂4Wf + log µ̂5Wm − log µ̂5Wf − log µ̂4Wm

= λ̂XZ4f + λ̂XZ5m − λ̂XZ5f − λ̂XZ4m + λ̂XY Z4Wf + λ̂XY Z5Wm − λ̂XY Z5Wf − λ̂XY Z4Wm
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1.2.4 Example for finding the appropriate loglinear model

Example from Carolyn J. Anderson, Department of Educational Psychology, Illinois. (Could not
locate the original article.)
With this data the relationship between Worker’s and Supervisor’s job satisfaction in companies with
good and bad management shall be compared
The data:

Bad Management

Worker’s

Satisfaction

Low High

Supervisor’s Low 103 87 190

Satisfaction High 32 42 74

135 129 264

Good Management

Worker’s

Satisfaction

Low High

Low 59 109 168

High 78 205 283

137 314 451

To describe the association between the job satisfaction of workers and supervisors compute the
conditional odds ratios for bad and good management:

θ̂bad = (103× 42)/(32× 87) = 1.554

θ̂good = (59× 205)/(78× 109) = 1.423

with 95% confidence intervals (from SPSS (descriptives>crosstab, check risk in statistics)

θbad : (.904; 2.670)

θgood: (.944; 2.144)

The estimates are similar and the confidence intervals overlap a lot, which probably means that it
is reasonable to assume that the odds ratios for bad and good management are not different, the
relationship between the three variables seems to be homogeneous.
But also 1 is included in the confidence intervals, therefore it seems that the conditional odds ratios
could be one, which could mean that supervisor and worker are conditionally independent, and
the interaction for worker and supervisor will not be necessary in the model. We have conditional
independence between supervisor and worker (conditioned on management).
The models: (X = Management, Y = Supervisor, Z= Worker)

1. Saturated:

log(µijk) = λ+λMi +λYj +λZk +λXYij +λXZik +λY Zjk +λXY Zijk , i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K

2. Homogeneous:

log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik + λY Zjk , i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K
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3. Conditional independence of Supervisor and Worker (on management):

log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik , i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K

4. Independent:

log(µijk) = λ+ λXi + λYj + λZk , i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K

Actual and expected cell counts for the different models
cond. indep.

Manage Superv. Worker observed saturated homog. sprvsr-wrkr independ.
bad low low 103.00 103.00 102.26 97.16 50.29
bad low high 87.00 87.00 87.74 92.84 81.90
bad high low 32.00 32.00 32.74 37.84 50.15
bad high high 42.00 42.00 41.26 36.16 81.67
good low low 59.00 59.00 59.74 51.03 85.90
good low high 109.00 109.00 108.26 116.97 139.91
good high low 78.00 78.00 77.26 85.97 85.66
good high high 205.00 205.00 205.74 197.03 139.52

Fitted Odds ratios for the different models:

Model S and W (cond. on M) M and W (cond. on S) M and S (cond. on W)
saturated - bad, low 1.55 2.19 4.26
saturated - good, high 1.42 2.00 3.90
homogeneous 1.47 2.11 4.04
cond. indep.(super-worker) 1 2.40 4.32
independence 1 1 1

To assess the model fit for the four models we will look at measures of model fit (Pearson, deviance),
residuals, and compare the models by testing which parameters are zero.
To make sure that a more parsimonious model has not been missed, all possible models and their fit
are listed in the table below:

Model Fit
Model likelihood ratio df P Pearson df P
saturated 0 0 1 0 0 1
homogeneous 0.065 1 .799 0.065 1 0.799
cond. indep.(management) 5.387 2 0.068 5.410 2 0.067
cond. indep.(supervisor) 71.902 2 < .001 70.877 2 < .001
cond. indep.(worker) 19.711 2 < .001 19.884 2 < .001
cond. indep.(management, super) 35.597 3 < .001 35.719 3 < .001
cond. indep.(management, worker) 87.787 3 < .001 85.023 3 < .001
cond. indep.(super, worker) 102.111 3 < .001 99.094 3 < .001
independence 117.997 4 < .001 128.086 4 < .001

Model fit for the conditional independent (conditioned on management) model is acceptable. It is the
most parsimonious model which is not rejected at 5% significance. It is also obvious that every other

13



more parsimonious model has much larger G2 and X2 values, indicating much larger discrepancy
between data and model.
The residuals for the conditional independence model of workers and supervisor satisfaction are

The residuals do not cause any concern about the model fit.

Do the data provide sufficient evidence that in the homogeneous model the interaction term λSuperWorker
ij 6=

0?
Which is asking if there is an association between the supervisor and worker satisfaction for both
levels of management. (From the homogeneous relationship we already know that it would be the
same).
To find an answer compare the likelihood ratio statistic for the homogeneous model with the one of
the model of conditional independence of worker and supervisor satisfaction.

1. H0 : λSuperWorker
ij = 0 versus Ha : λSuperWorker

ij 6= 0, α = 0.05

2. dots

3. χ2
0 = 5.386− 0.065 = 5.321, df = 2− 1 = 1

4. 0.01 < P − value < 0.025 (table 7)

5. At significance level of 5% the data provide sufficient evidence that the interaction term is
different from 0, and should remain in the model.

Interestingly the result is in contradiction to the previous result, that the model of conditional
independence of worker and supervisor satisfaction is not rejected (p=0.068), when comparing with
the saturated model.

In summary we found two ”reasonable” models, the homogeneous and the conditional independent
model for workers and supervisors.
Even though the test for H0 : λSuperWorker

ij = 0 was significant, one might want to go with the
simpler more parsimonious model, especially after reviewing the residuals again which indicate an
appropriate fit for the more parsimonious model.
Also the sample size was quite big n = 751, which will make all tests quite sensitive and indicate
statistically significant results, without pointing towards practical relevance.
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The decision, which model to choose, also depends on the purpose of the model, the more complex
model will provide better predictions, where the simpler model provides easier interpretations.
Another criteria for choosing between the two models is Akaike’s information criterion (AIC), which
gives a measure of fit while correcting for the complexity of the model.

Model AIC
homogeneous -13.94
cond. indep.(super-worker) -6.61

The smaller the AIC the better the model, therefore the AIC favours the homogeneous model.

Example 7
Classical example from Fienberg (1977, p. 101)
The table classifies 4991 Wisconsin male high school seniors according to socio-economic status (low,
lower middle, upper middle, and high), the degree of parental encouragement they receive (low and
high) and whether or not they have plans to attend college (no, yes).

Socio-economic Status, Parental Encouragement and Educational Aspirations of High School Seniors
Social Parental College Plans
Stratum Encouragement No Yes Total
Lower Low 749 357 784

High 233 133 366
Lower Middle Low 627 38 665

High 330 303 633
Upper Middle Low 420 377 457

High 374 467 841
Higher Low 153 26 179

High 266 800 1066
Total 3152 1938 4991

In the analysis of these data view all three variables as responses, and study the extent to which they
are associated. In this process we test various hypotheses of complete and partial independence.
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