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1 Logistic Regression

In its easiest form the logistic regression model permits the modeling of a binary response variable
in dependency on a selection of explanatory variables.

� Random component: Binomial distribution of the response variable

� Systematic component: Linear predictor

� Link function: Logit function

1.1 Interpretation

For the interpretation again consider first the case of one numerical explanatory variable, x, and let
π(x) be the success probability at value x.
Then

Logit(π(x)) = log

�
π(x)

1− π(x)

�
= α + βx (1)

Which implies that for every increase by one unit in x the log odds increase by β. But what does
that mean?

Equation (1) is equivalent to

π(x)

1− π(x)
= exp(α + βx) = eα(eβ)x (2)

Therefore the odds are multiplied by eβ for every one unit increase in x. For example eβ = 1.5 means
that the odds increase by 50% for every increase by one unit in x.

Further, equations (1) and (2) are equivalent to

π(x) =
exp(α + βx)

1 + exp(α + βx)
(3)

It is obvious from all three equations that β determines the rate of increase in π(x), but the increase
is not the same for all x, since the relation ship between π(x) and x is not linear (straight line), but
S-shaped.
The steepest slope occurs at x for which π(x) = 0.5, this is when x = −α/β. Therefore it is called
the median effective level

EL50 = −α/β.
The median effective level is the value of x, where the probability for success equals 0.5. If β > 0
then larger (smaller) values than EL50 relate to higher(lower) success probabilities than 0.5.
Of course one can also find p% effective level, ELp.

ELp =
ln(p/(100− p))− α

β

Example 1
High school and Beyond (from C.J. Anderson, University of Idaho, introduced in a course on cate-
gorical data analysis)
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� Question: Is the proportion of students attending an academic program related to achievement
(x).

� Data from high school seniors (N=600).

� Response: Did students attend an academic high school program type or a non-academic
program type (Y ).

� Explanatory variables: Total score on 5 standardized achievement tests (Reading, Writing,
Math, Science, and Civics), x being the total of the scores.

The estimated model equation is

log( ˆodds) = ln

�
π̂(x)

1− π̂(x)

�
= −7.055 + .027x

A one point increase in the total test score multiplies the odds for a student to be in an academic
program by an estimated factor of e0.027 = 1.02, saying that the odds for being in an academic
program increases by 2% for a one unit increase in the total score.

Using equation (3) the estimated proportion of students with total score of x = 260 in an academic
program equals

π̂(260) =
exp(−7.055 + .027(260))

1 + exp(−7.055 + .027(260))
≈ 0.491

(This is what you get when you carry three decimal places, but it will change when you carry more.)
The EL50 = 7.055/0.027 = 261.30.
To find the 90% effective level, i.e. the value of x so that an estimated 90% of students with this
score are in academic programs, is EL90 = (ln(90/10)− (−7.055))/0.027 = 342.67.

The estimated model equation permits a comparison of the odds for different values of x. The odds
ratio for success when x = x1 versus x = x2 equals

θ(x1, x2) = (eβ)x1−x2

Example: The odds ratio for being in the program for students with scores of x = 300 versus
x = 200 equals θ(300, 200) = 1.02100 = 7.24 The odds for being on an academic program are 7.24
times higher for students with a score of 300 than for students with a score of 200.

Comment:
Logistic Regression is appropriate for many different type of studies, since it models odds. Even data
from retrospective studies (e.g. case-control studies), can be analyzed fitting this model.
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1.2 Inference

1.2.1 Confidence Interval for β

To estimate the effect of changes in x on π(x) or the odds(x) we should give confidence intervals for
the slope parameter β.
Based on the point estimator, β̂, and the estimated standard error, SE, from the SPSS output one
can obtain a large sample Wald confidence interval for β

β̂ ± zα/2SE

From here we can obtain a confidence interval for eβ by exponentiating the endpoints, giving the
multiplicative effect on the odds of increasing x by one unit.
For smaller sample sizes or probabilities close to 0 or 1, the likelihood ratio confidence interval is the
better choice. It includes all β0 for which the likelihood ratio test for H0 : β = β0 is not significant,
you can get these from SPSS, when using the GLM interface and choosing in the Statistics Tab the
Profile Likelihood radio button.
Example in handout 3.

1.2.2 Statistical Test for β

Already the Wald confidence interval is based on the fact that if the sample size is large then the
z-score

Z =
β̂ − β
SE

is approximately standard normally distributed, when β is the true population slope.

Wald test for the slope parameter β in a logistic regression model

1. Hypotheses:

Type of test Hypotheses
2-tail H0 : β = 0 versus Ha : β 6= 0
lower tail H0 : β ≥ 0 versus Ha : β < 0
upper tail H0 : β ≤ 0 versus Ha : β > 0

Choose α.

2. Assumptions: random samples, large sample size

3. Test Statistic:

z0 =
β̂

SE

4. P-value:

Type of test P-value
2-tail 2P (Z > |z0|)
lower tail P (Z < z0)
upper tail P (Z > z0)
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In many situations the log-likelihood test is the better choice but does not permit for upper or lower
tailed hypotheses. Remember, it is based on the log-likelihood, L0, when β = 0, and the log-likelihood
when β is not restricted.

Likelihood ratio test for the slope parameter β in a logistic regression model

1. Hypotheses:

H0 : β = 0 versus Ha : β 6= 0

Choose α.

2. Assumptions: random samples, large sample size

3. Test Statistic:
χ2
0 = −2(L0 − L1), df = 1

4. P-value = P (χ2 > χ2
0)

Example in handout 3.

1.2.3 Confidence Intervals for the Probabilities

Based on

π(x) =
exp(α + βx)

1 + exp(α + βx)

the model can be used to estimate the probability of success for a given value of x.
In addition software like SPSS can provide confidence intervals for π(x).
For x = 260 a 95% confidence interval for the true probability π(260) is given as [0.471,0.561] (from
SPSS).

The calculations are:
logit(π̂(x))± zα/2SE(logit(π̂(x)))

with

SE(logit(π̂(x))) =
È
V ar(α̂) + x2 V arβ̂ + 2x Cov(α̂, β̂)

The standard error for the confidence interval depends on the variance and covariance of α̂ and β̂.
Once you have this interval convert it to an interval for π(x).

1.2.4 The Covariance Matrix for the Model estimates

One can request SPSS to print the covariance matrix for the parameter estimates. This matrix is
the source for the standard errors for the confidence intervals.
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This matrix gives on the diagonal the variances of the parameter estimates, α̂ and β̂. The off diagonal
entries state the covariance for the two parameter estimates. (The covariance measures how strong
the two variables are related, but is not standardized like the correlation, so the covariance can
assume any value between −∞ and ∞.)

The SE for the estimates is the square root of their variances (the diagonal entries. For example, the
SE in the estimation of β is according to this matrix SE =

√
0.000007 = 0.0026

The SE2 for α̂ + β̂x (needed for the confidence interval for logit(π(x)) ) is

ˆV ar(α̂) + x2 ˆV ar(β̂) + 2x ˆCov(α̂, β)

.
Therefore a (1− α)× 100% confidence interval for logit(π(x)) is given by

logit(π̂(x))± zα/2
È

ˆV ar(α̂) + x2 ˆV ar(β̂) + 2x ˆCov(α̂, β̂)

Example 2
A 95% confidence interval for logit(π(260))

logit(π̂(x))± zα/2
È

ˆV ar(α̂) + x2 ˆV ar(β̂) + 2x ˆCov(α̂, β)

0.065± 1.96×
√

0.00849

(This result requires carrying 8 significant digits). Thus the the 95% confidence interval for logit(π(x))
is [-0.116 , 0.246].
Using

π(x) =
exp(logit(π(x)))

1 + exp(logit(π(x)))

will return [.471, .561] for a 95% confidence interval for π(260).

1.3 Logistic Regression with Categorical Predictors

In this section we will present the interpretation of a logistic regression in the case that the predictor
x is categorical.

One categorical predictor
Introduce indicator (dummy) variables. If x has I levels, I − 1 dummy variables are needed:

I Variable

1 d1 =

§
1 if x = 1
0 otherwise

2 d2 =

§
1 if x = 2
0 otherwise

...
...

I − 1 dI−1 =

§
1 if x = I − 1
0 otherwise
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When choosing these dummies the category I, the category not represented by a dummy, becomes
the reference category.
The model is

logit(π(x)) = α + β1d1 + . . . βI−1dI−1

So, one categorical predictor with I categories creates a model with I − 1 slope parameters!

The logits for the different categories are

Category, x logit(π(x))
1 α + β1
2 α + β2
...

...
I − 1 α + βI−1

I α

The βi is the difference in the logit for categories i and I of variable x.

βi = logit(π(i))− logit(π(I))
= ln(odds(i))− ln(odds(I))
= ln(odds(i)/odds(I))

Thus

eβi =
odds(i)

odds(I)

the odds ratio for success comparing categories i and I of x.
The odds for a success are eβi times higher in category i than in category I.

Also, from
logit(π(1))− logit(π(2)) = β1 − β2

we can conclude that

eβi−βj =
odds(i)

odds(j)

is the odds ratio for success comparing categories i and j of x.
The odds for a success are eβi−βj times higher in category i than in category j.

Example 3
HSB,
x = SES (socio economic status, categories: 1=low,2=middle,3=high)
Y = academic program (no=0, yes=1)
the dummies:

I Variable

1 d1 =

§
1 if x = 1
0 otherwise

2 d2 =

§
1 if x = 2
0 otherwise
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The model
logit(π(x)) = α + β1d1 + β2d2

The estimates:

Therefore the estimated model equation is

logit(π̂(x)) = 0.956− 1.725d1 − .989d2

The odds for being in an academic program for students with low SES (=1) is e−1.725 = .178 times
the odds for students with high SES (=3).

(odds(1)/odds(3)=.178)

According to the output we can reject H0 : β1 = 0 at significance level of 5% (χ2
0 = 46.49, df = 1)

and conclude that the odds for being in an academic program are significantly different for students
with SES of 1 and 3.

More than one categorical predictor
Assume we have two binary predictors, x and z, including a binary response Y , the data could be
presented in 3-way contingency table. Assume that all variables are coded with 0 and 1.
Let π(x, z) = P (Y = 1|x = 1, z = 1), the logistic regression model becomes

logit(π(x, z)) = α + β1x+ β2z

including main effects for x and z.
x and z are called dummy or indicator variables (coded with 0 and 1). The consequence for the logit
are summarized in the following table

x z logit(π(x, z))
0 0 α
1 0 α + β1
0 1 α + β2
1 1 α + β1 + β2

This model does not include interaction, meaning the relationship between x and Y is the same for
all levels of z, implying a homogeneous association between x, y and Z.
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The β1 gives the difference in the logit for categories 1 and 0 of variable x,
and β2 gives the difference in the logit for categories 1 and 0 of variable z.

β1 = logit(π(1, z))− logit(π(0, z))
= ln(odds(1, z))− ln(odds(0, z))
= ln(odds(1, z)/odds(0, z))

Thus

eβ1 =
odds(1, z)

odds(0, z)
, z = 0, 1

gives the odds ratio for success comparing categories 0 and 1 of x while controlling for z.
The odds for ”success” (Y = 1) at x = 1 is eβ1 times the odds for ”success” at x = 0, controlling for
z.

A test for β1 = 0 is equivalent to a test for odds ratio =1, or a test whether x and Y are independent
when controlling for z, which we have called conditional independence before.
If β1 = 0 the model would reduce to

logit(π(z)) = α + β2z

Example 4
HSB data
Again the response will be the variable identifying the program (1=academic, 0 = general or voca-
tional),
the factors considered will be gender (0=female, 1=male) and school type (0=public, 1=private).
The model:

logit(π(gender, school)) = α + β1gender + β2school

The SPSS output:
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The omnibus test indicates that at least one slope is different from 0. At significance level of 5% the
data provide sufficient evidence (χ2

0 = 38.569, df = 2, P −value < 0.001) that either gender or school
type or both have an effect on the chance of a student being in an academic program.

The Deviance is reported being 0.321 with df=1 indicating a very good model fit.

The estimates:

The estimated model equation:

logit(π̂(gender, school)) = −0.191 + 0.070gender + 1.533school

The gender has at significance level of 5% no effect on the chance of a student being in an academic
program when controlling for school type (χ2

0 = 0.173, df = 1, P = 0.678). (At significance level
of 5% gender and being in an academic program are conditionally independent (conditioned on the
school type)).
The odds for being in an academic program for students in private schools is e1.533 = 4.63 times the
odds for students in public schools.

odds(0)/odds(1)=odds(private)/odds(public) = e1.533 = 4.63.

The effect of school type on the chance of being in an academic program is significant (χ2
0 =

31.791, df = 1, P < 0.001) when controlling for gender. (At significance level of 5% school type
and being in an academic program are not conditionally independent (conditioned on gender)).

Comment: The model introduced above does not include interaction terms. I.e. the effect of x on
Y is the same for all levels of z and the effect of z on Y is the same for all levels of x.
Thus this model implies homogeneous associations between x and Y given z and between z and Y
given x.
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1.4 Multiple Logistic Regression

Consider now the general logistic regression model with k predictors, x1, x2, . . . , xk.
The model equation is then

logit(π(x1, x2, . . . , xk)) = α + β1x1 + β2x2 + · · ·+ βkxk

βi gives the effect of a one unit increase in xi on the log odds for Y = 1 controlling for the remaining
predictors, thus eβi is the multiplicative effect of a one unit increase in xi on the odds for Y = 1 at
fixed levels of the remaining variables. And α are the log odds for Y = 1, when all predictors are
zero.

1.4.1 Test for an association with a factor

To check if a certain factor is useful in the model we can use the difference in the log likelihood for
the model including the factor and the otherwise same model excluding the factor as a test statistic
for conducting a test if the parameter(s) for the factor is(are) different from 0.

1. H0 : “success” is independent from factor versus Ha : H0 is not true. Choose α.

2. Random sample, large sample

3. Test Statistic: Let L0 be the log likelihood for the model excluding the factor, and L1 the log
likelihood for the same model adding the factor

χ2
0 = −2(L0 − L1), df = difference in the number of parameters in the two models

4. P-value=P (χ2 > χ2
0)

Example 5
HSB data
Consider the model including predictors:

� x1 academic score (total on the exams)

� x2 school type (0=public, 1=private)

� d1, d2 SES (1=low, 2=middle, 3=high)

Question: When correcting for academic score and school type does the SES have an effect on the
chance of a student being in an academic program?
Model M0:

logit(π) = α + β1x1 + β2x2

SPSS gives L0 = −332.058 for this model in ”Goodness of fit table”.

Model M1:
logit(π) = α + β1x1 + β2x2 + β3d1 + β4d2

SPSS gives L1 = −325.980 for this model.
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1. H0 : being in an academic program is independent from SES when controlling for academic
score and school type Ha : H0 is not true. (H0 : β3 = β4 = 0), α = 0.05.

2. Assumptions are met

3. Test Statistic:
χ2
0 = −2(L0 − L1) = 12.156, df = 5− 3 = 2

4. P-value=P (χ2 > 12.156), which is according to the table less than 0.005.

5. Reject H0 since the P-value is smaller than α.

6. At significance level of 5% the data suggests that the SES is associated with the chance of a
student being in an academic program even when controlling for academic success and school
type.

Estimates: β̂3 = −0.891 and β̂4 = −.706 indicate that the higher the SES the higher the chance for
a student to be in an academic program when keeping the other factors unchanged.
eβ̂3 = 0.41, eβ̂4 = 0.49, eβ̂3−β̂4 = 0.83: Interpretation???

Comment: Ordinal variables can sometimes be included as numerical predictors with the model.
The problem with this approach is that the result will depend on the scores being chosen for the
different categories.
Unless there is a justification for the choice of scores the approach demonstrated in the example
should be chosen.

1.4.2 Interaction

Two predictors, x and z, are interacting in their effect on the response variable Y , if the conditional
relationships (conditioned on z) between x and Y differ for the different levels of z.
To accommodate interaction between factors with the model cross product terms between the pre-
dictors are added to the model.
When not including interaction terms automatically a homogeneous associations between the three
variables is assumed (i.e. the value of z has NO effect on the relationship between x and Y ).
To illustrate

Example 6
To permit for interaction between academic success and school type include the cross product term
x1 × x2 with the model

logit(π) = α + β1x1 + β2x2 + β3x1 × x2
Testing H0 : β3 = 0 is testing for H0 : association between academic program and academic success
is the same for both school types.
To include interaction with SPSS either include this term in the model section, when specifying the
GLM, or use transform>Compute Variable. . . and create a new variable including the products of
x1 and x2. The new variable is then added to the predictor variables and added as main effect in the
model section.
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In both cases when testing H0 : β3 the Wald χ2 statistic reported is 0.001, df = 1 and P = .971. At
significance level of 5% the data do not provide sufficient evidence that academic success and school
type interact in their effect on the proportion of students in academic high school programs.

Question: How many interaction terms would be needed when permitting for interaction between
SES and academic success?

1.4.3 Interpretation of Slopes in Interaction Models

Consider a logistic regression model for a binary response (success/failure) with one numerical pre-
dictor x and one categorical predictor z at two levels (treatment A and B). Introduce the dummy
variable for z

dz =

§
1 if z = treatment A
0 if z = treatment B

This makes treatment B the reference category.

Then the model equation for the interaction model becomes:

ln

�
π

1− π

�
= α + β1x+ β2dz + β3xdz

Let’s consider the model equations for the different treatments to better understand the interpretation
of the parameters:

Treatment = B (dz = 0): ln
�

π
1−π

�
= α + β1x

Treatment = A (dz = 1): ln
�

π
1−π

�
= α + β1x+ β2 + β3x = (α + β2) + (β1 + β3)x

This implies the following interpretations:

� eα: for treatment B these are the odds for success when x = 0

� eβ1 : for treatment B the odds for success are eβ1 times higher/lower for every one unit increase
in x.

� eα+β1 : for treatment A these are the odds for success when x = 0

� eβ1+β3 : for treatment A the odds for success are eβ1+β3 times higher/lower for every one unit
increase in x.

Example 7
Illustrate the interpretation of the slopes in interaction model
Let π = probability a randomly chosen person votes for Trump.
x1 = age of a person
x2 = state the person lives in (x2 = 1⇔ state = NY, x2 = 0⇔ state = Montana

The interaction model:
logit(π) = α + β1x1 + β2x2 + β3x1 × x2

Then the model equations for the different states looks like this:

� Montana (x2 = 0):
logit(π) = α + β1x1
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� New York (x2 = 1):

logit(π) = α + β1x1 + β2 + β3x1 = (α + β2) + (β1 + β3)x1

Assume β1 = 0.09, then eβ1 = 1.1, and β3 = −0.08, then eβ1+β3 = 1.01

� Montana: in Montana for every extra year in age the odds for a person to vote for Trump in
creases by 10%

� New York: in New York for every extra year in age the odds for a person to vote for Trump in
creases by 1%

The effect of age on the odds to vote for Trump is not the same in the two states, age and state
interact in their effect on the odds of voting for Trump.
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