
1 Introduction

Outline

1. Lecture in person

2. Office Hours in person or can be arranged to be online using Google Meet.

3. Homework/Labwork

Lecture and lab assignments will be combined into one assignment due every other week, use
the assignments to convince yourself that you have learned the material

Groups of up to three students will complete a big major data analytic project. Students will
be expected to meet online or in person to complete the project. The final report will be a
group submission.

4. Web site: link in Meskanas, has online notes and extra resources, not all will be copied into
Meskanas

5. Email: use email to contact me, we can arrange e-chats if necessary

6. Textbook (recommended): Agresti “Introduction to Categorical Data Analysis”

I really like this book, but it is quite expensive. My online notes align with the presentation in
the book and use the same notation. The book provides additional explanations of concepts
and ideas, and always presents extra examples.

7. Check out the Meeting Room in the Math & Stats Department. Use it as a study space or find
class mates.

Pre-reqs

• Assumption, you can interpret statistics:

– What does it mean to be 95% confident?

– What is inferential statistics?

From STAT 151, STAT 252, STAT 266:

– What is measured by the P-value?

– Rational in testing

– Why can we not avoid making errors in inferential statistics?

– Why do we need the assumption to be met?

– How to conduct a test?

– What is the difference between parameter, estimator, and estimate?

– What is the role of a model?

If you feel you are a bit shaky regarding these concepts, find the review notes in STAT 252 on
my website for a comprehensive review.
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• In this course we add to your statistical “toolbox”.

– How are estimators chosen?

– More probability theory

– More models

– Analysis of categorical data (descriptive and inference)

– Using SPSS in the process

What are your expectations?

1.1 Models

In statistics we use models to describe the population and then we use sample data, to estimate
parameters in the model, and conduct tests relating to these parameters.
The models are usually characterized by the response variable (the variable we want to learn about),
and the independent(explanatory) variables (factors), which might or might not be related to the
response variable.
All models considered in STAT 252 and STAT 266 assumed that we had one numerical response
variable, and either categorical factors (ANOVA) or numerical (and categorical) predictors (Linear
Regression).

In this course we will discuss models for categorical response variables.
In a course on multivariate statistics we would discuss models with more than one response variable.

1.2 Categorical Data

Categorical variables fall within two categories: nominal and ordinal

• A variable is called ordinal, if its scale reflects an order.
E.g: attitude towards quality of education (excellent, good, fair, poor)
age (child, youth, young adult, middle aged, old adult)
length of vacation (too short, short, just right, long, too long)
Likert scale items (strongly agree, agree, neutral, disagree, strongly disagree)
Did you take Stat 252? (yes,no)

The statistical tools used for this type of variable preferably takes this ordering into account.

• A variable is called nominal, if such an order does not exist.
E.g.: religious affiliation (Catholic, Jewish, Protestant, Muslim, none, other)
preferred grocery store (Safeway, Superstore, Save-on-foods, Greenwood, other)

The order of the listing is irrelevant, and only statistical tools should be used which do not
depend on the order.

Tools which can be used for nominal data can also be used for ordinal variables (even though some
information is lost), but models which are designed for ordinal data are not appropriate for nominal
data.
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1.3 Probability Distributions for Categorical Variables

In this course we study tools to analyze categorical data, before we can go into statistics the models
for such populations have to be developed. Models for the population are always claims about the
distribution of the variable in the population. Therefore we need to study the distributions for
describing categorical variables.

Remember distributions describe (categorical) random variables by

1. indicating the possible values, and

2. providing the probabilities for the values to occur.

1.3.1 Binomial Distribution

• trial ends either in success or failure (two possible outcomes)

• in each trial the probability for success is π

(here π is not the number 3.1415..., but the probability parameter of the binomial distribution)

• repeat the trial n times independently from each other

• Y is the random variable that gives the number of successes

Then Y has a binomial distribution with possible outcomes {0, 1, 2, . . . , n} and for y ∈ {0, 1, 2, . . . , n}

P (Y = y) = p(y) =

Ç
n

y

å
πy(1− π)n−y

with Ç
n

y

å
=

n!

y!(n− y)!
, n! = n(n− 1)(n− 2) . . . 1

The mean number of successes is
µ = n π

and the standard deviation is
σ =
»
nπ(1− π)

Example 1
Assume we are looking for a model to describe treatment success (for example for bypass surgery).
Assume the success rate is 0.8.
Now we look at 5 patients (each patient represents a trial), the probability for success for each patient
is π = 0.8, and n = 5. Y is the number of successes in the 5 surgeries.
The probability for no success in the five surgeries is:

P (Y = 0) = p(0) =

Ç
5

0

å
0.80(1− 0.8)5 =

5!

0!5!
1 · 0.25 = 0.25 = 0.00032

The probability for two success in five surgeries is:

p(2) =

Ç
5

2

å
0.82(1− 0.8)3 =

5!

2!3!
0.64 · 0.008 =

5 · 4
2

0.00512 = 0.0512
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How many successes would we expect in average in 5 surgeries? (this is the mean) µ = n · p =
5(0.8) = 4
If we would look at the number of successful surgeries in 5 patients again and again how much spread
would we see in the number of successes? σ =

√
5 · 0.8 · 0.2 = 0.8944

(if you look at 20 patients it would be larger – 1.789)

1.3.2 Multinomial Distribution

Often there are more than two possible outcomes:

• trial could end in one of c different outcomes (c = 2 is binomial)

• in each trial the probability for outcome i is πi,
∑

i πi = 1

• repeat the trial n times independently from each other

• Yi is the random variable that gives the number of observations in category i

Then the tuple (Y1, Y2, . . . , Yc) has a multinomial distribution with the probability that n1 fall into
category 1, n2 fall into category 2, . . . , nc fall into category c, with

∑
i ni = n, is then

P (Y1 = n1, Y2 = n2, . . . , Yc = nc) = p(n1, n2, . . . , nc) =
n!

n1!n2! . . . nc!
πn1
1 π

n2
2 . . . πnc

c

The mean number of observations in category i is then

µi = n πi

and the standard deviation is
σi =

»
nπi(1− πi)

Example 2
Instead of just calling a surgery a success or failure, we add a category partial success, therefore
c = 3. For the three categories, assume we know πf = 0.2, πs = 0.5, πps = 0.3 (total is one).
Then the probability for one failure, one partial success, and 3 successes in 5 surgeries is

P (Yf = 1, Yps = 1, Ys = 3) = p(1, 1, 3) =
5!

1!1!3!
0.210.310.53 = 20 · 0.2 · 0.3 · 0.125 = 0.15

In five surgeries we expect in average 5(0.2) = 1 failure, 5(0.3) = 1.5 partial successes, and 5(0.5) =
2.5 successes.

4



1.4 Principle of Maximum Likelihood

In practice the probabilities for the different categories are unknown, and one task in inferential
statistics is the estimation of these probabilities from sample data.
The question arises how should one use the sample data best to find such estimates.
In linear regression the least squares estimator is introduced. Choosing estimates, such that the
estimated model has the “smallest distance” to the data.

In categorical data analysis another strategy for choosing an estimator called Maximum Likelihood
is introduced.
This method will be demonstrated by finding an estimator for the probability, π, of a binomial
distribution.
Assume the data collected consist of 10 trials including 7 observed successes. What would be a good
estimate for the probability of a success in a single trial?

• If it would be true that π = .2, the probability for observing 7 successes would be

P (7) =

Ç
10

7

å
0.27(1− 0.2)3 = 0.00079

• If π = .5, the probability for observing 7 successes would be

P (7) =

Ç
10

7

å
0.57(1− 0.5)3 = 0.11719

• If π = .7, the probability for observing 7 successes would be

P (7) =

Ç
10

7

å
0.77(1− 0.7)3 = 0.26683

For the different choices of values for π, P (7) is largest for π = .7. This is not only true for the
chosen values, but for all possible choices for π (namely π ∈ [0, 1]).
This is telling us that the probability for observing 7 successes in 10 trials is the most likely outcome
in the case when π = 0.7. Therefore a reasonable estimate for π, would be π̂ = 0.7.

5



The Maximum Likelihood Estimate is the value of the parameter that results in the
highest likelihood for the observed data to occur.

More general: The likelihood function L(π) gives the probability of observing the sample data
depending on the value of the population parameter.

The Maximum Likelihood estimate is the value π̂ which makes the likelihood function as large
as possible, or the parameter value for which the probability of the observed outcome takes its largest
value.

The Maximum Likelihood estimator is then the function, which assigns to sample data the
Maximum Likelihood estimate.

Example 3
Find an estimate for π, the proportion of flights being on time during the Thanksgiving weekend,
based on a random sample of 300 flights within Canada, of which 170 were on time.

Because the random variable describing if a single flight is on time has two possible outcomes (yes,no),
and the outcomes for different flights can be considered independent, the distribution of the number
of flights being on time follows a binomial distribution.
Once n= number of flights observed and y= number of flights on time are known, the likelihood
function is according to the binomial distribution:

L(π) =

Ç
n

y

å
πy(1− π)n−y =︸︷︷︸

here

Ç
300

170

å
π170(1− π)130

The function is largest when π = π̂ = y/n (if you took calculus, confirm this result). Therefore the
ML estimator for π is

MLE(π) = π̂ = p =
y

n

And the ML estimate for π from our example is

p = π̂ =
170

300
= 0.5666

The ML estimator is a random variable (like the z-score, t-score, or sample mean). Random variables
are in general described by their (sampling) distribution.
Distributions tell us the possible values of a random variable, and how likely these are to occur.

Estimators based on the ML method are popular because of their properties for large samples:

• They are consistent, when increasing the sample size they ”converge in probability” to the true
value of the parameter.

• Under all consistent estimators they are most efficient, they have the smallest standard errors
(= standard deviation of the estimator).

• They are approximately normally distributed.
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1.5 Confidence Interval for π

Remember the purpose of calculating confidence intervals? Let zα/2 denote the value
having right-tail probability of α/2 for a standard normal distribution.
The standard error of π̂ is given by

SE(π̂) =

 
π̂(1− π̂)

n

Then a (1− α)× 100% confidence interval for π is given by

π̂ ± zα/2SE(π̂)

What does it mean to be x% confident?

This confidence interval is based on the fact that

Z =
π̂ − π
SE(π̂)

is approximately normally distributed, which is of course not true for small sample sizes. Therefore
a different formula for finding confidence intervals for small samples should be used.

For small samples the “plus four method” (or Agresti-Coull) confidence interval gives better
results.
Here we pretend we have four more observations of which 2 are successes and 2 are failures, then we
use for the resulting numbers the formula above. Simulations have shown that for small samples, the
success rate

number of confidence intervals including the true value of π

number of confidence intervals calculated

of this method is closer to 1− α then for the original formula.

Example 4
To estimate the proportion, π, of businesses that provide incentives to carpool to work, students
polled 15 companies, of these 2 have programs in places to encourage car pooling.
Then π̂ = 2/15 = 0.133 is the ML estimate for π, and SE(π̂) =

√
0.133(1− 0.133)/15 = 0.08768.

For a 95% confidence interval, α = 0.05, α/2 = 0.025, and z0.025 = 1.96. The 95% confidence interval
is then

0.133± 1.96 · 0.08768↔ 0.133± 0.1718↔ [−0.0388, 0.3048]

This does not make sense, since the true proportion can not be negative!

The plus four method delivers the following interval π̃ = 4/19 = 0.210, SE(π̃) = 0.0936

0.210± 1.96 · 0.0936↔ 0.210± 0.184↔ [0.027, 0.395]

That is better! We are 95% confident that the proportion of businesses which actively support car
pooling falls between 0.027 and 0.395, i.e. between 2.7% and 39.5%.
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1.6 Test for π

Remember the purpose of a statistical test?

Remember the 6 steps in a complete statistical test?

A Large Sample Test concerning a Proportion π

1. Hypotheses:

Test type

Upper tail H0 : π ≤ p0 versus Ha : π > p0

Lower tail H0 : π ≥ p0 versus Ha : π < p0

Two tail H0 : π = p0 versus Ha : π 6= p0

Choose α.

2. Assumption:Random sample and, the sample size n is large, that is that nπ̂ > 5 and n(1−π̂) >
5.

3. Test statistic: Let p0 be a value between zero and one and define the test statistic

z0 =
π̂ − p0√

(p0(1− p0))/n

4. P-value:

Test type p-value

Upper tail P (z > z0)

Lower tail P (z < z0)

Two tail 2 · P (z > abs(z0))

5. Decision:

If P-value≤ α then reject H0

If P-value> α then do not reject H0

6. Context.

Example:
Do the data provide sufficient evidence that less than 20% of businesses provide incentives for car-
pooling?
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1. We want to test (putting what we are asking in the alternative hypothesis Ha)
H0 : π ≥ 0.2 vs. Ha : π < 0.2 at a significance level of α = 0.05.

2. The sample size is n = 15 and y = 2, so that π̂ = 0.133, nπ̂ = 2 and n(1− π̂) = 13 > 5, so the
assumptions are not met (assuming the sample was randomly chosen).

Why is this problematic? Now the distribution of the z-score is not approximately normal and
the p-value will be wrong, therefore should we be able to reject H0, the error probability might
be larger than α or smaller, we do not know.

We should use the plus four method with π̃ = 4/19 = 0.210, SE(π̃) = 0.0936

3. Then

z0 =
0.210− 0.2

0.0936
= 0.106

4. Now calculate the P-value, according to the choice of Ha it is a lower tail test, so the P-value is
the lower tail probability. P− value = P (z < 0.106) = 0.5438 (from table normal distribution
table.)

5. Decision: Since 0.54388=P-value> 0.05 = α, H0 is not rejected.

6. Context: At significance level of 5% the sample data do not provide sufficient evidence that
less than 20% of businesses provide incentives for car pooling.

Remember when not rejecting the null hypothesis we do not have any information on the error
probability, therefore the careful wording (not committing to the decision).
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1.7 Wald, Likelihood Ratio, and Score Inference

Generalization for arbitrary parameters.

Three different types of test statistics/confidence intervals are introduced. These can potentially lead
to three different answers for the same question, which can be quite confusing. Of the three answers,
which is correct?
I compare this to having 2 clocks: with one clock one “knows”, what time it is, but with two clocks
(not showing the same time) one is left in doubt.
In some scenarios, it won’t be possible to calculate all three options.

1. Wald: Let β be an arbitrary parameter, and β̂ the ML-estimator for β (remember β̂ is a
random variable). The Wald score is based on the SE for the ML-estimate.

Then

Z =
β̂ − β0
SE(β̂)

is approximately normally distributed (because β̂ is normal, because it is an ML-estimator).

We also know that in this case Z2 is approximately χ2 distributed with df = 1. This type of
statistic is called a Wald statistic, and tests based on Z or Z2 are called Wald tests.

2. Likelihood Ratio: An alternative test is based on the likelihood function.

• Let l0 be the maximum of the likelihood function for parameter values from H0.

• Let l1 be the likelihood function for β̂, that is the largest possible value for the likelihood
function.

The l1 is always at least as large as l0.

The likelihood ratio test statistics is then

−2 log(l0/l1)
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If H0 is not true, we should expect that l0 is much smaller than l1, then the ratio l0/l1 is much
smaller than 1, therefore the log (meaning the natural logarithm: ln) is much smaller than 0,
therefore the likelihood ratio test statistics will be very large (and positive).

This test statistic can be proved to be approximately χ2 (with df = 1) distributed when H0 is
true (cool!)

3. Score Inference

The score inference statistic is based on the standard error of the ML-estimator, if H0 would
be true, therefore using the standard error, for H0.

For example: When testing H0 : π = 0.5, then SE =
√

0.5(1− 0.5)/n.

Therefore the test introduced above is a score test.

Comments:

• For the linear regression model with a normal error Wald, Likelihood Ratio and Score tests are
all the same.

• The calculated P-values are usually only approximations of the true P-values, because we use
approximative distributions. In general the larger the sample sizes the better the approxima-
tion. Therefore only report at most 3 decimal places.

• Each method can be used to find confidence intervals for β:

A (1− α)×100% confidence interval is the set of all β0, so that H0 : β = β0 can not
be rejected at significance level of α. How does that make sense?

Example 5
We are using a new sample to test if the proportion of businesses which give incentives for carpooling
is different from 0.2. The larger sample includes n = 100 businesses and y = 15. We will use all
three tests for testing

• H0 : π = 0.2 versus Ha : π 6= 0.2, at α = 0.05.

• Assumptions: Random sample! Relatively large sample size. 100 is usually large enough

• Test statistic:

1. Wald test: π̂ = 15/100 = 0.15, SE(π̂) =
√

0.15(1− 0.15)/100 = 0.0357

z0 =
0.15− 0.2

0.0357
= −1.400

2. Likelihood ratio: As discussed in section 1.4 the likelihood function is

l(π) = p(15) =

Ç
100

15

å
π15(1− π)85

Then for π0 from H0

l0 = l(0.2) = 0.04806
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and for π̂
l1 = l(0.15) = 0.11109

therefore
χ2
0 = −2 ln(l0/l1) = −2 ln(0.43262) = 1.6758, df = 1

3. Score test: SE(π0) =
√

0.2(1− 0.2)/100 = 0.04 (using 0.2 from H0)

z0 =
0.15− 0.2

0.04
= −1.25

4. P-value:

1. Wald: p = 2× P (Z < −1.4) = 2(0.0808) = 0.1616 (normal distribution table)

2. likelihood ratio: P = P (χ2 > 1.6758) > 0.10 (chi-squared table)

3. score test: P = P (Z < −1.25) = 2(0.1056) = 0.2112 (normal distribution table)

5. Decision: With α = 0.05 Do not reject H0 with any of the three tests.

6. At significance level of 5% the data do not provide sufficient evidence that the proportion
of businesses that support carpooling is different from 0.2.

Would 0.2 be in the 95% Wald confidence interval for π? Yes, because the Wald test for H0 : π = 0.2
did not result in the rejection of H0 at significance level of α = 5%.
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