
4 Multicategory Logistic Regression

4.1 Baseline Model for nominal response

• Response variable Y has J > 2 categories, i = 1, , J

• π1, . . . , πJ are the probabilities that observations fall into the categories
Question: What effect do certain predictors have on the π1, . . . , πJ?

• Simultaneously model for pairs of categories the odds of falling within one category instead of
another.

• Pair a baseline category (usually last or “control” category) with all remaining categories.

• Model with one predictor x:

Log(πj/πJ) = αj + βjx, j = 1, ., J − 1,

Note: For each category j compared, a new set of parameters (αj, βj) is introduced.

• Baseline category logit model allows comparison of any categories a and b

log(πa/πb) = log((πa/πJ)/(πb/πJ)) = log(πa/πJ) − log(πb/πJ) = (αa − αb) − (βa − βb)x

Example 1
Contraceptive Use in Dependency on Age
Data is in contraceptive.sav 3165 currently married women from El Salvador (1985)

Variables:

contra (s(sterilization), o(other), n(none))
age (midpoints of 5 year intervals, viz: 17.5, 22.547.5)
a2 age squared
freq frequency in each age midpoint/contraception level cell

To start create a contingency table, for visual acuity. Also test if age and contraception method are
independent.

SPSS (PSPP) commands:

1. Data>Weight Cases
Weight cases by Frequency Variable: freq
OK

2. Analyze>Descriptive Statistics>Crosstabs
Row(s): contra
Column(s): age
Statistics button: check chi square
Continue
OK

3. OK
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PSPP output:

According to the output at significance level of 5% we can reject that the choice of contraceptive is
independent from age (χ2(12) = 430.03, p < 0.001, LRχ2(12) = 521.10, p < 0.001).

To determine the nature of the relationship between the two variables a baseline logit model can be
fit with “no contraceptive” as the baseline category.
It is therefore of interest to graph age versus log(πs/πn) and age versus log(πo/πn). These log values
can be obtained for the age midpoints by calculating for each age category

Log(π̂s/π̂n) = Log(s/n) and Log(π̂o/π̂n) = Log(o/n)

SPSS commands:

1. Transform>Compute Variable
Target Variable lsn
Numeric Expression: LN(s/n) OK

2. Transform>Compute Variable
Target Variable:lon
Numeric Expression: LN(o/n) OK

3. Graph>Legacy Dialogs>Scatter/Dot>Overlay Scatter
Define
X-Y pairs

Pair Y Variable X Variable
1 lsn age
2 lon age
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4. OK

5. OK

6. Double click to activate graph in output

7. Click on lsn on legend, and change type to a triangle in the popup
apply
close

8. Right click on an lsn triangle (or a lon circle)
select “add fit line” at total from the dropdown menu
select quadratic in the popup
apply

9. Close the activated graph window to return it to the output file.

From the graph one can conclude that a quadratic model on age seems to fit the log odds well.
The model:

Log(πo/πn) = αo + βo,1age+ βo,2age
2

Log(πs/πn) = αs + βs,1age+ βs,2age
2

Test if age has a significant effect on the odds for using one contraceptive method over another. Also
test if the quadratic model provides a significant better fit than the linear model:
SPSS commands for quadratic model:
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1. Analyze>Regression>Multinomial Logistic
Dependent: contra
Reference Category: first (choosing n as baseline category)
Covariate(s):
age
a2

2. Model button:
Choose Custom
Build Terms: Main effects
Select age and a2 from Factors & Covariates window and bring them over to Forced Entry
Terms window.
Continue

3. Statistics button:
leave defaults
Also check Goodness of Fit under model.

4. Save Window:
select estimated response probabilities

From this table we obtain the information for testing if age has a significant effect on the odds for
using one contraceptive over another. Testing the null hypothesis that all four slopes are zero, can
be tested by comparing the quadratic model with the intercept only model. The LR-test statistic
χ2(4) = 500.628, p-value< 0.001, indicates that the data provide sufficient evidence at significance
level of 5% that at least one of the slopes is different from 0, therefore age has an effect on the use
of contraceptive in El Salvador at the time of data collection.

The table “LR tests” from the SPSS output gives us the information we need to compare the two
models:

4



According to the subscription of the table, to test if both slopes for age2 equal zero in the model the
test statistics gives χ2(2) = 273.503 with a p-value< 0.001, therefore reject at significance level of
5% that the slopes are both 0 and support the quadratic over the linear model.
Also note that AIC and BIC support the quadratic model, which is not surprising given the graph
above.
The tables on Model fit indicate that the model fit for the quadratic model is acceptable, but the
pseudo R2 values indicate that predictions from these model will not be very accurate.

Use the table below to obtain the model equations to estimate odds and probabilities within the
different age groups

Instead one can have SPSS calculate the probabilities, by checking “estimate response probabilities”
after clicking the Save button.
In the data spreadsheet three extra columns will be added for example giving for age= 22.5

EST1_1 EST2_2 EST3_3

.64 .23 .13

telling that at age 22.5 π̂n = .64, π̂0 = .23, and π̂s = .13.

4.2 Ordinal Logistic Regression

If the response is ordinal it is meaningful to take this into account by modelling an ordinal logistic
regression.

• Y is an ordinal variable with categories 1, 2, . . . , J

• Consider cumulative probability for category j = P (Y ≤ J) = π1 + · · · + πj, j = 1, 2, . . . , J

• It is P (Y ≤ 1) ≤ P (Y ≤ 2) ≤ · · · ≤ P (Y ≤ J) = 1
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• Model the cumulative log odds

Logit (P (Y ≤ j)) = log( P (Y≤j)
1−P (Y≤j)

)

• For one predictor variable x, proportional odds model is , for j = 1, 2, . . . , J − 1, Logit
(P (Y ≤ j)) = αj + βx

NOTE: the slope β is the same for all cumulative logits

• β describes the effect of x on the odds of falling into categories 1 to j versus higher categories.
The model assumes that this effect is the same for all cumulative odds.

• NOTE: Property of this model is that, for β > 0, as x increases, the probability of falling in a
lower category increases.

NOTE: SPSS models Logit(Y ≤ j) = αj − βjx to “fix” this property.

Example 2
HSB Data:
Use SES (low-1, middle-2, high-3) as response
Predictors:
Math
Writing
Sex ( 1-Male, 2-Female)
Race (1-Hispanic, 2-Asian, 3-Black, 4-White)

The two model equations fir by SPSS will be for j = 1, 2.

Logit(P (Y ≤ j) = αj − β1math− β2writing − β3sex− β41race1 − β42race2 − β43race3

We first check to be sure we have no ses/sex cells or ses/race cells with very few observations, as this
would cause problems in analyzing our model.
SPSS commands:

1. Analyze>Descriptive Statistics > Crosstabs
Row(s): ses
Column(s): sex
Ok

2. Analyze>Descriptive Statistics>Crosstabs
Row(s): ses
Column(s): race
Ok
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The smallest cell count is 8, the model can be fit.

SPSS commands to fit the proportional cumulative odds model

1. Analyze>Regression>Ordinal
Dependent: ses
Factor(s):
sex
race
Covariate(s):
writing
math

2. Output button:
Check Test of parallel lines
Check Predicted category
Continue
Ok

At significance level of 5% the considered model fits significantly better than the intercept only
model, with χ2(6) = 74.482, p < 0.001.

deviance/df= 0.989 indicating acceptable model fit and the pseudo R2 all indicate that the predictors
are relevant but will not result in reliable predictions.

Before interpreting the model parameters one more important test should be conducted. As men-
tioned above it is assumed that the slope parameters are the same for modelling all cumulative log
odds. In the analysis it is important to confirm that this is an acceptable assumption.
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At significance level of 5% the data do not provide sufficient evidence that the slopes are not all the
same for the two cumulative log odds. The model can be deemed appropriate.

To interpret the sign of the slopes it is important to remember that SPSS inverts the sign of the
slopes such that a positive slope indicates a positive relationship between the predictor and the
probabilities to fall into higher categories.
Therefore: The higher a student scores on the writing and math exam the more likely they fall into
higher SES categories correcting for sex and race. Since e.043 = 1.044, a one point increase in math
increases a students odds of being in a higher SES category by 4.4% and with e.027 = 1.027, a one
point increase in math increases your chance of being in a higher SES category by 2.7%, all other
variables in the model held constant.
Since sex=1 indicates male students the positive sign for the sex=1 dummy indicates that male
students were more likely to come from higher SES categories than female students after correcting
for math and writing scores and race.
All race dummies were not significant, therefore the data do not indicate a significant effect of race
on the probabilities of belonging into higher or lower SES categories. The negative slopes would have
told that Asian, Hispanic, and Black students have lower probabilities for falling into higher SES
categories than white students after correcting for sex and math and writing score.
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