1.3 Tests for Independence

Data: Class Examples Flu/Vaccine

How to conduct tests for independence with SPSS is illustrated using the example from class.

Example 1

Do the data provide sufficient evidence that the vaccine is effective and helps preventing people from getting the flu?

		No Vaccine (0)	One Shot (1)	Two shots (2)
The data	Flu(1)	24	9	13
	No Flu (0)	289	100	565
T D	and a			

Input Data to SPSS: Flu (Response), Vaccine (Explanatory): Data is in fluvaccine.sav (posted on website)

Use the following SPSS commands to create a cross-tab table for flu and vaccine, and perform a test of independence. Standardized residuals are calculated to identify cells of possible influence.

- 1. Data>Weight Cases Weight by Frequency Variable: Count OK
- 2. Analyze>Descriptive Statistics>Crosstabs Row(s): Flu Column(s): Vaccine

Statistics popup: check Chi-square Cells popup: Counts: check Observed check Expected check Residuals: Adjusted standardized OK

Adjusted Standardized Residuals in SPSS are the Standardized Cell Residuals in Class Notes (Agresti text)

			0	1	2	Total
Flu 0	0	Count	289	100	565	954
		Expected Count	298.6	104.0	551.4	954.0
		Adjusted Residual	-3.1	-1.9	4.2	
	1	Count	24	9	13	46
		Expected Count	14.4	5.0	26.6	46.0
		Adjusted Residual	3.1	1.9	-4.2	
Total		Count	313	109	578	1000
		Expected Count	313.0	109.0	578.0	1000.0

Flu * Vaccine Crosstabulation

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	17.313 ^a	2	.000
Likelihood Ratio	17.252	2	.000
Linear-by-Linear Association	14.915	1	.000
N of Valid Cases	1000		

a. 0 cells (0.0%) have expected count less than 5. The

minimum expected count is 5.01.

Are catching the flu and vaccination status associated?

- 1. Ho: Flu and Vaccine are independent vs Ha: Ho not true, or Ha: Flu and Vaccine not associated vs Ha: Ho not true $\alpha=0.05$
- 2. Assume: Random sample, all $\hat{\mu}_{ij} \geq 5$
- 3. Test statistic from output Pearson: $X^2 = 17.313, df = 2$ Likelihood Ratio: $G^2 = 17.252, df = 2$
- 4. For both tests: P-value < 0.001
- 5. Reject Ho
- 6. At significance level of 5% the data provide sufficient evidence that getting vaccinated is associated with the vaccination status.

Is the vaccine preventing or giving the flu?

Adjusted standardized residuals ≥ 1.96 in absolute magnitude identify cells contributing to the significance.

See cells 00, 02, 20, and 22 in the output.

Interpretation of standardized residual for cell 00: The residual is negative and below -1.96. Significantly less people stayed flu free (Flu=0) after no shot (Vaccine=0) then would have been expected if vaccine and flu would be independent. Indicating that not getting vaccinated put you at higher risk of getting the flu.