1 Contingency Tables

1.1 Basics

A contingency table is a place where a joint distribution of two categorical variables, say X and Y, where X has I levels and Y has J levels, can be summarized. It is usual to consider an X variable to be an explanatory variable, and a Y variable a response variable. Both marginal distributions and conditional distributions can be of interest. Data that is used can either be offered in raw form (Format 1) or in summarized form (Format 2) in SPSS.

Example 1

The file HockeyGenderRaw contains two variables. The response variable WatY (Yes-1, No-2) records whether or not an individual watches hockey and appears in column 1 and the explanatory variable GenX (Male -1, Female-2) records gender and appears in column 2.

The file WatchHockeyGenderSummarized summarizes the counts of observations for the (GenX, WatY) pairs (1,1), (1,2), (2,1) and (2,2).

Format 1		Forma		
WatY	GenX	WatY	GenX	Count
1	1	1	1	33
1	1	1	2	9
:	:	2	1	11
1	2	2	2	36
1	2			
:	÷			
2	1			
2	1			
:	÷			
2	2			
2	2			
:	:			

When working with raw data with columns of categorical variables, one should create a summary cross-tab table that counts the groupings. Here are the SPSS commands and output to do so for the hockey watching and gender raw data.

- 1. Analyze>Descriptive Statistics>Crosstabs
- 2. Row(s): GenX
- 3. Column(s): WatY

4. OK

			WatY		
			1	2	Total
GenX	1	Count	33	11	44
		% within GenX	75.0%	25.0%	100.0%
	2	Count	9	36	45
		% within GenX	20.0%	80.0%	100.0%
Total		Count	42	47	89
		% within GenX	47.2%	52.8%	100.0%

1.2 Comparing two categorical variables(each with 2 levels)

It is usual to have X in the row, and Y in the column in a contingency table. Here n_{ij} represents the count of observations in the *ij*-th cell, i = 1, 2 and j = 1, 2, while n_{i+} is the count in row i, n_{+j} is the count in column j, and n is the total number of observations.

		Y		
		1	2	Total
X	1	n_{11}	n_{12}	n_{1+}
	2	n_{21}	n_{22}	n_{2+}
	Total	n_{+1}	n_{+2}	n

Conditional Probabilities:

 $P(Y = 1 | X = 1) = \pi_1 \text{ with } \hat{\pi}_1 = p_1 = n_{11}/n_{1+}$ $P(Y = 1 | X = 2) = \pi_2 \text{ with } \hat{\pi}_2 = p_2 = n_{21}/n_{2+}$

• Difference in probabilities π_1 and π_2 :

Wald $(1 - \alpha) \times 100\%$ confidence interval for $\pi_1 - \pi_2$: $(p_1 - p_2) \pm z_{\alpha/2} \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$

• Relative Risk $rr = \pi_1/\pi_2$, $\hat{rr} = p_1/p_2$:

 $(1-\alpha) \times 100\%$ confidence interval for $\ln(rr)$: $\ln(p_1/p_2) \pm z_{\alpha/2} \sqrt{\frac{1-p_1}{n_1 p_1} + \frac{1-p_1}{n_1 p_1}}$

Convert (exponentiate) the endpoints to find a CI for rr.

• Odds Ratio Odds of success(=1) in row $i = \pi_i/(1 - \pi_i)$ Odds Ratio= $\vartheta = odds_1/odds_2$

MLE for ϑ is $\hat{\vartheta} = n_{11}n_{22}/n_{12}n_{21}$

 $(1 - \alpha) \times 100\%$ confidence interval for $\ln(\vartheta)$: $\ln(\vartheta) \pm z_{\alpha/2}\sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}$ Convert (exponentiate) the endpoints to find a CI for odds ratio.

Example 2

From class

 $\begin{array}{cccccc} \text{PCR} & \text{Relapse} & \text{Count} \\ 1 & 1 & 30 \\ 1 & 2 & 45 \\ 2 & 1 & 8 \\ 2 & 2 & 95 \end{array}$

PCR can be considered to the explanatory variable, and Relapse the response

SPSS commands and output:

- Data>Weight Cases
 Weight by Frequency Variable: Total OK
- 2. Analysis>Descriptive Statistics>Crosstabs Row(s): PCR Column(s): Relapse Statistics popup: check Risk OK
 Cells popup: Counts: check Observed Percentages: check Row OK
 OK

PCR * Relapse Crosstabulation

			Rela		
			1	2	Total
PCR	1	Count	30	45	75
		% within PCR	40.0%	60.0%	100.0%
	2	Count	8	95	103
		% within PCR	7.8%	92.2%	100.0%
Total		Count	38	140	178
		% within PCR	21.3%	78.7%	100.0%

Risk Estimate

		95% Confidence Interval		
	Value	Lower	Upper	
Odds Ratio for PCR (1 / 2)	7.917	3.361	18.648	
For cohort Relapse = 1	5.150	2.504	10.590	
For cohort Relapse = 2	.651	.536	.789	
N of Valid Cases	178			

*Note: If data is in two columns, one for PCR (X) and one for Relapse (Y), the weight cases command lines are unnecessary.

 $p_1=0.4, p_2=0.078$ 95% Wald CI for $(\pi_1-\pi_2)$ calculate by hand: (.200, 0.445), or use the app at http://vassarstats.net/prop2_ind.html, or

- 1. Analyze>Generalized Linear Models>Generalized Linear Models
- 2. In "Type of Model" tab:

> Custom, and "Distribution": Binomial

3. In "Response" tab:

Choose dependent variable: Response

4. In "Predictors" tab:

Choose factor: pcr

5. In "Model" tab:

Move pcr into "Model"

- 6. Click OK
- 7. The confidence interval can be found in the "Parameter Estimates" table in row labelled pcr=1.00

With 95% confidence we learn that the proportion of PCR positive children who relapse is between 0.2 and 0.445 larger than the proportion of PCR negative children who relapse. Note that 0 is not in the 95% CI, indicating a significant difference in the relapse rate for PCR positive and negative children.

Estimated **relative risk** $\hat{rr} = p_1/p_2 = 0.4/0.078 = 5.15$, 95% CI for rr of a relapse of PCR positive versus PCR negative children falls between (2.504, 10.590)

[from output]. With 95% confidence we find that the probability of a relapse is between 2.5 and 10.6 times higher for children with a positive PCR than a negative PCR.

Note that 1 is not in the 95% CI, we have sufficient evidence that the probability of a relapse is significantly higher for PCR positive children.

Estimated **odds ratio** = $\hat{\vartheta} = n_{11}n_{22}/n_{12}n_{21} = (30x95)/(8x45) = 7.917$

95% CI for odds ratio of a relapse for PCR positive versus PCR negative children falls between (3.361, 18.648) [from output].

With 95% confidence we find that the odds of a relapse is between 3.4 and 18.6 times higher for children with a positive PCR than a negative PCR.

Note that 1 is not in the 95% CI, we have significant evidence that a relapse is associated with PCR. The odds of a relapse is 3.361 to 18.648 times higher for the PCR+ group than for the PCR- group.

Mantel-Haenzel Odds Ratio Test

SPSS commands and output:

1. Analysis>Descriptive Statistics>Crosstabs

Row(s): PCR	Mantel-Haenszel Common Odds Ratio Estimate	
Column(s): Relapse	Estimate	7.917
Statistics popup: check Cochran's and	In(Estimate)	2.069
Mantel-Haenszel statistics	Std. Error of In(Estimate)	.437
	Asymp. Sig. (2-sided)	.000
check Test common odds ratio equals: 1	Asymp. 95% Confidence Common Odds Ratio Lower Bound Interval	3.361
OK	Upper Bound	18.648
Cells popup: Counts: check Observed	In(Common Odds Ratio) Lower Bound	1.212
	Upper Bound	2.926
Percentages: check Row OK	The Mantel-Haenszel common odds ratio estimate is asymptotically normally distribute the common odds ratio of 1.000 assumption. So is the natural log of the estimate.	buted under
ОК		

- 1. $H_0: \vartheta = 1$ versus $H_a: \vartheta \neq 1, \ \alpha = 0.05$
- 2. Random sample (ok), large enough sample (each cell has at least count 5)

3. $z_0 = 2.069/.437 = 4.73$

- 4. P-value<0.001
- 5. P-value< $\alpha = 0.05$, reject H_0
- 6. At significance level of 5% the data provide sufficient evidence that the odds ratio of a relapse for PCR positive and negative children is different from 1, indicating a relationship between PCR outcome and relapse.