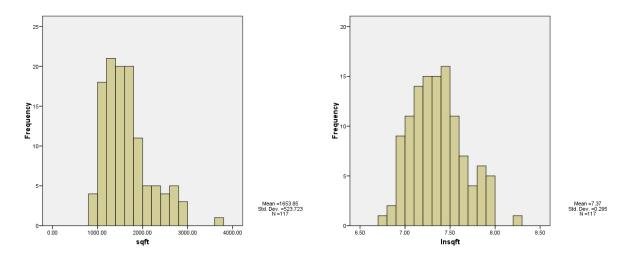
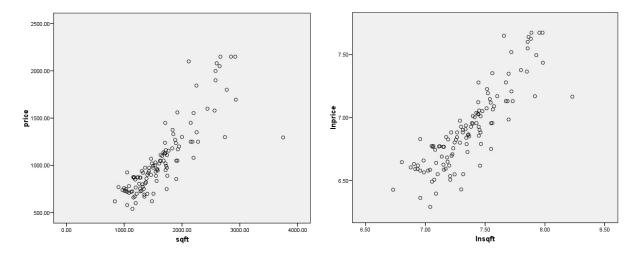

1 Transformations in Multiple Linear Regression


1.1 Logarithmic

Albuquerque Real Estate Data:

The distribution of the response variable y = price is skewed to the right. Transforming it with the logarithmic function (ln), will result in a more "normal" distribution.



The same observation is true for sqft

Using the transformed variables in a linear regression model will improve the fit but also the observations in the Residual Analysis.

First compare the **scatterplots**.

Correlation coefficients

 $r_{price,sqft} = .845$ and $r_{lnprice,lnsqft} = .863$

Models

$$price = \beta_0 + \beta_1 sqft + e, \quad e \sim \mathcal{N}(0, \sigma), \quad (1)$$

 $ln(price) = \beta_0 + \beta_1 ln(sqft) + e, \quad e \sim \mathcal{N}(0, \sigma), \quad (2)$

this is equivalent to

$$price = e^{\beta_0 + \beta_1 ln(sqft) + e} = e^{\beta_0} sqft^{\beta_1} e^e, \quad e \sim \mathcal{N}(0, \sigma)$$

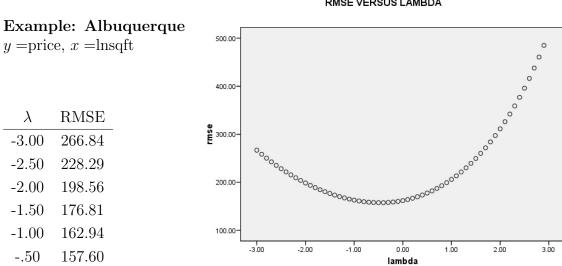
Regression Analysis

Model (1) R Square = .714 $\hat{\beta}_0 = 47.819, SE(\beta_0) = 62.855$ $\hat{\beta}_1 = .614, SE(\beta_1) = .036$

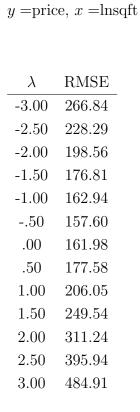
Model (2) R Square = .745 $\hat{\beta}_0 = .017, SE(\beta_0) = .377$ $\hat{\beta}_1 = .936, SE(\beta_1) = .051$

1.2 Box-Cox Method

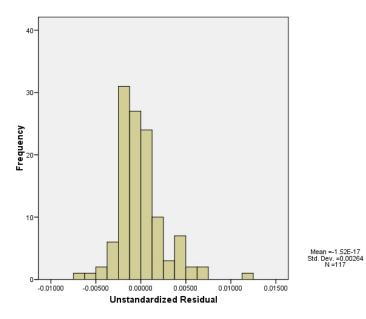
Box-Cox Method (paper in 1964) for finding the "best" transformation, to obtain normally distributed sample data.


Consider the following transformations for different values of λ

$$y(\lambda) = \begin{cases} \frac{y^{\lambda} - 1}{\lambda}, & \text{if } \lambda \neq 0\\ \ln(y), & \text{if } \lambda = 0 \end{cases}$$


After the transformation of the response variable, run the regression model and obtain the SSE from the ANOVA table.

Find the λ with the smallest SSE (\sqrt{MSE}). Given those results choose the "best" transformation according to the following table.


Best λ	Equation	Name
-2.5 to -1.5	$1/y^2$	inverse square
-1.5 to -0.75	1/y	reciprocal
-0.75 to -0.25	$1/\sqrt{y}$	inverse square root
-0.25 to 0.25	$\ln(y)$	natural log
0.25 to 0.75	\sqrt{y}	square root
0.75 to 1.5	y	none
1.5 to 2.5	y^2	square

RMSE VERSUS LAMBDA

According to these results the best lambda is -0.5, therefore the transformation $1/\sqrt{y}$ should be chosen.

