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1 Linear Regression

1.1 Simple Linear Regression Model

The linear regression model is applied if we want to model a numeric response variable and its
dependency on at least one numeric factor variable. We will later see how we can add more factors,
numerical as well as categorical to the model. Because of this flexibility we find regression to be a
powerful tool. But again we have to pay close attention to the assumptions made for the analysis of
the model to result in meaningful results.

A first order regression model (Simple Linear Regression Model)

y = β0 + β1x+ e

where

y = response variable

x = independent or predictor or factor variable

e = random error, assumed to be normally distributed with mean 0 and standard deviation σ

β0 = intercept

β1 = slope

A consequence of this model is that for a given value of x the mean of the random variable y equals
the deterministic part of the model (because µe = 0).

µy = E(y) = β0 + β1x

β0 + β1x describes a line with y-intercept β0 and slope β1
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In conclusion the model implies that y in average follows a line, depending on x.
Since y is assumed to also underlie a random influence, not all data is expected to fall on the line,
but that the line will represent the mean of y for given values of x.
We will see how to use sample data to estimate the parameters of the model, how to check the
usefulness of the model, and how to use the model for prediction, estimation and interpretation.

1.1.1 Fitting the Model

In a first step obtain a scattergram, to check visually if a linear relationship seems to be reasonable.

Example 1
Conservation Ecology study (cp. exercise 2.148 on pg. 100)
Researchers developed two fragmentation indices to score forests - one index measuring anthropogenic
(human causes) fragmentation, and one index measuring fragmentation for natural causes.
Assume the data below shows the indices (rounded) for 5 forests.

noindex xi anthindex yi
25 34
28 41
28 45
27 38
23 25

The diagram shows a linear relationship between the two indices (a straight line would represent the
relationship pretty well).

If we would include a line representing the relationship between the indices, we could find the
differences between the measured values and the line for the same x value. These differences between
the data points and the values on the line are called deviations.

Example 2
A marketing manager conducted a study to determine whether there is a linear relationship between
money spent on advertising and company sales.
The data are shown in the table below. Advertising expenses and company sales are both in $1000.
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ad expenses xi company sales yi
2.4 225
1.6 184
2.0 220
2.6 240
1.4 180
1.6 184
2.0 186
2.2 215

The graph shows a positive strong linear relationship between sales and and advertisement expenses.

If a relationship between two variables would have no random component, the dots would all be
precisely on a line and the deviations would all be 0.

deviations = error of prediction = difference between observed and predicted values.

We will choose the line that results in the least squared deviations (for the sample data) as the
estimation for the line representing the deterministic portion of the relationship in the population.

Continue example 1:
The model for the anthropogenic index (y) in dependency on the natural cause index (x) is:

y = β0 + β1x+ e

After we established through the scattergram that a linear model seems to be appropriate, we now
want to estimate the parameters of the model (based on sample data). We will get the estimated
regression line

ŷ = β̂0 + β̂1x

The hats indicate that these are estimates for the true population parameters, based on sample data.
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Continue example 2:
The model for the company sales (y) in dependency on the advertisement expenses (x) is:

y = β0 + β1x+ e

We now want to estimate the parameters of the model (based on sample data). We will get the
estimated regression line

ŷ = β̂0 + β̂1x

Estimating the model parameters using the least squares line

Once we choose β̂0 and β̂1, we find that the deviation of the ith value from its predicted value is
yi − ŷi = yi − β̂0 + β̂1xi.
Then the sum of squared deviations for all n data points is

SSE =
∑

[yi − β̂0 + β̂1xi]
2

We will choose β̂0 and β̂1, so that the SSE is as small as possible, and call the result the ”least
squares estimates” of the population parameters β0 and β1.

Solving this problem mathematically we get: With

SSxy =
∑

xiyi −
(
∑
xi)(

∑
yi)

n
and SSxx =

∑
x2i −

(
∑
xi)

2

n

the estimate for the slope is β̂1 = SSxy

SSxx
and

the estimate for the intercept is β̂0 = ȳ − β̂1x̄.

Continue example 1:

xi yi x2i y2i xiyi
25 34 625 1156 850
28 41 784 1681 1148
28 45 784 2025 1260
27 38 729 1444 1026
23 25 529 625 575

totals 131 183 3451 6931 4859

From these results we get:

SSxy = 4859− (131)(183)

5
= 64.4

SSxx = 3451− (131)2

5
= 18.8

β̂1 =
64.4

18.8
= 3.4255

β̂0 =
185

5
− 3.4255

131

5
= −53.14

So, ŷ = −53.14 + 3.4255x describes the line that results in the least total squared deviations (SSE)
possible. Here SSE = 12.60 (found with minitab).
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The intercept tells us that the anthropogenic fragmentation score would be -53 in average if the
natural cause score is zero. This is probably not possible.
The slope tells us that in average the anthropogenic score increases by 3.42 point for every one point
increase in the natural cause index.

Continue example 2:

xi yi x2i y2i xiyi
2.4 225 5.76 50625 540.0
1.6 184 2.56 33856 294.4
2.0 220 4.00 48400 440.0
2.6 240 6.76 57600 624.0
1.4 180 1.96 32400 252.0
1.6 184 2.56 33856 294.4
2.0 186 4.00 34596 372.0
2.2 215 4.84 46225 473.0

totals 15.8 1634 32.44 337558 3289.8

From these results we get:

SSxy = 3289.8− (15.8)(1634)

8
= 62.65

SSxx = 32.44− (15.8)2

8
= 1.235

β̂1 =
62.65

1.235
= 50.7287

β̂0 =
1634

8
− 50.7287

15.8

8
= 104.0608

So, ŷ = 104.06 + 50.73x describes the line that results in the least total squared deviations (SSE)
possible.
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Interpretation:
For every extra dollar spent on advertisement the company sales increase in average by $50.73.
When the company does not spend any money on advertisement (x = 0), then the mean sales equal
$104060.8.
Use

SSE = SSyy − β̂1SSxy
to find the SSE for this regression line.

SSyy = 337558− (1634)2

8
= 3813.5

Then SSE = 3813.5− 50.7287(62.65) = 635.3469.

Built in assumptions:
When introducing the model, we stated that the error shall be normally distributed with mean zero
and standard deviation σ independent from the value of x.
This is illustrated by ——————> diagram

� The first implication of the model is that the mean of the response variable, y follows a straight
line in x, not a curve

We write µy = E(y) = β0 + β1x

� The model also implies that the deviations from the line are normally distributed, where the
variation from the line is constant for x.

� The shape of the distribution of the deviations is normal.

� When using the least squares estimators introduced above we also have to assume that the
measurements are independent.

From this discussion we learn that another important parameter in the model (beside β0 and β1) is
the standard deviation of the error: σ

Estimating σ
When estimating the standard deviation of the error in an ANOVA model we based it on the SSE
or MSE. We will do the same in regression.
For large standard deviations we should expect the deviations, that is the difference between the
estimates and the measured values in the sample, to be larger than for smaller standard deviations.
Because of this it is not surprising that the SSE =

∑
(ŷi − yi)2 is part of the estimate.
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In fact the best estimate for σ2 is

σ̂2 = s2 =
SSE

n− 2

where
SSE =

∑
(ŷi − yi)2 = SSyy − β̂1SSxy

and

SSyy =
∑

y2i −
(
∑
yi)

2

n

then the best estimate for σ is

σ̂ = s =

√
SSE

n− 2

It is called the estimated standard deviation of the regression model.

Continue example 1:
The estimated standard deviation, σ̂, in the model for the fragmentation indices:

SSyy = 6931− (183)2

5
= 233.2

SSE = 233.2− 3.4255(64.4) = 12.5978

then

σ̂ = s =

√
12.5978

5− 2
= 2.049

is the estimated standard error in the regression model.

Continue example 2:
The estimate for the standard deviation σ in the model for the company sales is

σ̂ = s =

√
635.3469

8− 2
= 10.29

is the estimated standard error in the regression model.

For interpreting σ̂:
One should expect about 95% of the observed y values to fall within 2σ̂ of the estimated line.
(applying empirical rule to the error of the regression model).

1.1.2 Checking Model Utility – Making Inference about the slope

As the sample mean x̄ is an estimate for the population mean µ, the sample slope β̂1 is an estimate
for the population slope β1. We can now continue on the same path as we did when using sample data
for drawing conclusions about a population mean: find a confidence interval, learn how to conduct a
test.

In order to this we have to discuss the distribution of β̂1.

If the assumptions of the regression model hold then

� β̂1 is normally distributed
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� µβ̂1 = β1

� σβ̂1 =
σ√
SSxx

σβ̂1 is estimated by sβ̂1 =
s√
SSxx

which is the estimated standard error of the least squares slope β̂1.

Combining all this information we find that under the assumption of the regression model

t =
β̂1 − β1
s/
√
SSxx

is t-distributed with df = n− 2.

(1− α)× 100% CI for β1

β̂1 ± t∗
s√
SSxx

where t∗ = (1− α/2) percentile of the t-distribution with df = n− 2 (to be found from t-table).

Continue example 1:
A 95% CI for β1 (df=3)

3.4255± (3.182)
2.049√

18.8
→ 3.4255± 1.1648

A 95% CI for β1 is [2.2607 ; 4.5903]. We conclude with 95% confidence that the anthropologic index
increases in average between 2.26 to 4.59 points for a one point increase in the natural cause index.

Continue example 2:
A 95% CI for β1 (df=8-2=6)

50.72± (2.447)
10.29√
1.235

→ 50.72± 22.658

A 95% CI for β1 is [28.062 ; 73.288]. We conclude that with 95% confidence the sales price increases
in average between $28.1 and $73.3 for every extra dollar spent on advertisement.

Does the CI provide sufficient evidence that β1 6= 0?
This is an important question, because if β1 would be 0, then the variable x would contribute no
information on predicting y when using a linear model.

Another way of answering this question is the model utility test about β1

1. Hypotheses: Parameter of interest β1.

test type hypotheses
upper tail H0 : β1 ≤ 0 vs. Ha : β1 > 0
lower tail H0 : β1 ≥ 0 vs. Ha : β1 < 0
two tail H0 : β1 = 0 vs. Ha : β1 6= 0 (model utility test)

Choose α.

2. Assumptions: Random sample of independent data points and the Simple Linear Regres-
sion model is an appropriate description of the relation ship between response variable y and
predictor variable x.
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3. Test statistic:

t0 =
β̂1

s/
√
SSxx

, df = n− 2

4. P-value:

test type P-value
upper tail P (t > t0)
lower tail P (t < t0)
two tail 2P (t > abs(t0))

5. Decision: If P-value < α reject H0, otherwise do not reject H0.

6. Put into context

Continue example 1:
Test if β1 > 0

1. Hypotheses: Parameter of interest β1.

H0 : β1 ≤ 0 vs. Ha : β1 > 0 Choose α = 0.05.

2. Assumptions: Regression model is appropriate

3. Test statistic:

t0 =
3.4255

2.049/
√

18.8
= 9.358, df = 3

4. P-value: upper tail P (t > t0) < 0.005 (table IV).

5. Decision: P-value < 0.005 < 0.05 = α reject H0

6. At significance level of 5% we conclude that on average the anthropogenic index increases as the
natural cause index increases. The linear regression model helps explaining the anthropogenic
index.

Continue example 2:
Test if β1 > 0

1. Hypotheses: Parameter of interest β1.

H0 : β1 ≤ 0 vs. Ha : β1 > 0 Choose α = 0.05.

2. Assumptions: Regression model is appropriate

3. Test statistic:

t0 =
50.72− 0

10.29/
√

1.235
= 5.477, df = 6

4. P-value: upper tail P (t > 5.477) < 0.005 (table IV)

5. Decision: P-value < 0.05 = α, reject H0

6. At significance level of 5% we conclude that the mean sales increase, when the amount spend
on advertisement increases.
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1.1.3 Measuring Model Fit

When we have data on two numerical variable and wonder about their association, we could always
find the regression line, even if the relationship is not linear, or there is no association. When
assessing the scatter plot in a first step the outcome is subjective, therefore in a next step Pearson’s
correlation coefficient is introduced as a measure of the strength of the linear relationship between
the two variables of interest.
Pearson’s Correlation Coefficient

The correlation coefficient

r =
SSxy√
SSxxSSyy

measures the strength of the linear relationship between two variables x and y.

Properties

1. −1 ≤ r ≤ 1

2. independent from units used

3. If the absolute value of r equals 1 (abs(r) = 1) then all measurements fall precisely on a line

4. r > (<)0 indicates a positive (negative) relationship

5. r ≈ 0 indicates no linear relationship

One has to be cautious only to use r only to measure the strength of a linear relationship. If the two
variables are related by a curve r might be close to 0 although the relationship is very close.

r ≈ 0.8 r ≈ −0.5 r ≈ 0

r ≈ 1 r ≈ −0.9 r ≈ 0(nonlinear)
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Continue example 1:

r =
64.4√

18.8(233.2)
= 0.9726

indicates a very strong positive linear relationship between the two indices.

Continue example 2:

r =
62.65√

1.235(3813.5)
= 0.9107

indicates a very strong positive linear relationship between the company sales and the advertisement
expenses.

Population Correlation Coefficient
r can be interpreted as an estimate of the population correlation coefficient ρ (Greek letter rho),
and to test if there is a linear association between two variables a test for H0 : ρ = 0 would be
appropriate.
But such a test would be equivalent to testing H0 : β1 = 0, which we can already do.

Coefficient of Determination
In addition to measuring the strength of a linear association between two variables with the corre-
lation coefficient, one can use the Coefficient of Determination to get more information about the
relationship between x and y.
The coefficient of determination measures the usefulness of the model, it is the correlation coefficient
squared, r2, and a number between 0 and 1.
It’s wide use can be explained through its interpretation, which becomes apparent using the alter-
native formula for r2:

r2 =
SSyy − SSE

SSyy

Exploring the formula:

� SSyy measures the spread in the y values,

� SSE measures the spread in y we can not explain through the linear relationship with x

� Then SSyy − SSE is the spread in y explained through the linear relationship with x.

� By dividing (SSyy − SSE) by SSyy, we find that r2 gives the proportion in the spread of y,
that is explained through the linear relationship with x

Continue Example 1:
The coefficient of determination in our example is

r2 =
233.2− 12.5978

233.2
= 0.946

94.6% of the variation in the anthropogenic index is explained through the natural cause index, this
suggests that fragmentation of the two cause are highly related and interdependent.
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Continue Example 2:
The coefficient of determination in the sales example is

r2 = 0.91072 = 0.829

82.9% in the variation in the company sales can be explained through the linear relationship with
the advertisement expenses. Meaning that the sales are driven to a high degree by the amount spend
on advertisements.

Important use of the Coefficient of Determination:
A high coefficient of determination (r2 > 0.8, maybe already for r2 > 0.6) indicates that the model
is suitable for estimation and prediction.

1.1.4 Residual Analysis: For checking if the SLRM is an appropriate fit for the rela-
tionship between predictor and response variables

The conclusions from the regression analysis can only be trusted, if the assumptions about the
population are correct.
In particular, it has to be assumed that the regression model is an appropriate description of the
population, more specifically:

1. the sample data represents a random sample from the population

2. the deterministic part of the model is linear in x, i.e. the mean of y is linear in x

3. the error is normally distributed, with mean 0 and standard deviation σ (independent from x).

1. The first assumption can only be checked by investigating how the data were collected.

2. The second assumption can be assessed by looking at the scatterplot relating predictor with
response. If the pattern resembles a line the assumption can be assumed to be met.

3. To check if there is evidence for a violation of the third assumption a residual analysis (like in
ANOVA) should be conducted.

The residuals are the differences between each measured value of y and the estimate, ŷ based on the
estimated model.
Let i indicate an individual measurement, then the residual for measurement i is

êi = yi − ŷi = yi − (β̂0 + β̂1xi)

If the model is a good description of the population, the residuals would be measurements coming
from a normal distribution with mean 0 and standard deviation σ.
To check if the assumption of normality is appropriate, a QQ-plot and/or a histogram of the residuals
could be analyzed.
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Continue example 1:

This QQ-plot shows no indication that the assumption of normality is violated.

If the homogeneity/homoscedasticity assumption is met then a scattergram of x versus the residuals
would show a random scatter of the points around zero, over the interval of observations of x, not
showing any pattern or outliers.
(Diagrams: pattern, outliers, spread depending on x)

OK Pattern X Funnel X

The figure on the left shows an even scatter of the residuals for all values of the predictor (horizontal
axis), there is no evidence that the assumption might be violated.
The figure in the middle shows a clear non-linear pattern in the residuals in dependency on the
predictor, such patterns indicate a violation of the assumption that x and y are linearly related.
The figure on the right has funnel pattern, the larger x the more scatter in the residuals, this indicates
a violation of the homogeneity assumption.

Continue example 1:
There are not enough measurement in the sample to properly asses this residual plot.
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Continue example 2:
For this example again a QQ-plot for the residuals is used to check for normality of the error.

The measurement do not fall along a line, but the printed CI includes all measurements and indicates
no significant violation of normality.

If the model is appropriate then a scattergram of x versus the residuals would show a random scatter
of the points around zero over the interval of observations of x, and not showing any pattern or
outliers. In particular the scatter would be the same for all values of the predictor.
Because of the small number of measurements this is hard to judge for this data. There seems
greater scatter around ad=2, but this would not be considered conclusive evidence of a violation of
the homogeneity assumption.
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1.1.5 Applying the Model – Estimation and Prediction

Once the residual analysis supports that the proposed model describes the relationship properly, the
model can be used for

1. estimation: estimate mean values of y, E(y) for given values of x. For example: in cases when
the natural cause index equals 22, what is the average anthropogenic index?

When spending $2000 on advertisements, what are the average sales?

2. prediction: predict future individual value of y based on the knowledge of x. For example, we
score a different forest with a natural cause index of x = 22.5, what value do we predict for y
= anthropogenic index.

Next week the company budgets $3500 for an ad campaign, what sales are predicted based on
this value?

Which application can be answered with higher accuracy? To answer this question observe that in 1
the focus is on the MEAN of the response for a given value of the predictor, and for 2 one attempts
to predict INDIVIDUAL VALUES of the response given a value for the predictor.

The key to both applications of the model is the least squares line, β̂0+β̂1x, providing point estimators
for both tasks.
To find confidence intervals for E(y) for a given x, and for an individual value y, for a given x one
has to study the distribution of β̂0 + β̂1x for the two tasks.

Sampling distribution of ŷ = β̂0 + β̂1x

1. The standard deviation of the distribution of the estimator ŷ of the mean value E(y) at a
specific value of x, say xp, is

σŷ = σ

√
1

n
+

(xp − x̄)2

SSxx

This is called the standard error of estimation.

2. The standard deviation of the distribution of the prediction error, y − ŷ, for the predictor ŷ of
an individual new y at a specific value of x, say xp, is

σ(y−ŷ) = σ

√
1 +

1

n
+

(xp − x̄)2

SSxx

This is the standard error of prediction.

Using these standard errors one now can state:
A (1− α)100% Confidence Interval for E(y) at x = xp

ŷ ± t∗ s
√

1

n
+

(xp − x̄)2

SSxx

A (1− α)100% Prediction Interval for y at x = xp

ŷ ± t∗ s
√

1 +
1

n
+

(xp − x̄)2

SSxx

16



Comment: Do a confidence interval, if interested in the mean of y for a certain value of x, but
if you want to get a range where a future value of y might fall for a certain value of x, then do a
prediction interval.

Continue example 1: The natural cause index for a forest was found to be xp = 27.5, where should
we expect the anthropogenic index to fall? Find a prediction interval.
For xp = 27.5 find ŷ = −53.14 + 3.4255(27.5) = 41.06. With df = 3 t∗ = 3.182

41.06± 3.182(2.049)

√
1 +

1

5
+

(27.5− 131/5)2

18.8
, gives 41.06± 3.182(2.049)

√
1.2899

which is 41.06± 5.736 = [35.324, 46.796]. For a forest with natural cause index of 27.5 we estimate
that the middle 95% of anthropogenic index values to fall between 35.3 and 46.8.
Estimate the mean of the anthropogenic index for forests with natural cause index of 27.5 at confi-
dence level of 95%.

41.06± 3.182(2.049)

√
1

n
+

(xp − x̄)2

SSxx
, gives 41.06± 3.182(2.049)

√
0.2899

which is 41.06± 2.7194 = [38.8881, 44.3194]. With 95% confidence the mean anthropogenic index of
forests with natural cause index of 27.5 falls between 38.9 and 44.3.

Continue example 2: If the company decides to invest $2000 in advertisements, what are the sales
they should expect on average? Estimate with 95% confidence.
For xp = 2 find ŷ = 104.06 + (50.73)2 = 205.52. With df = 6 t∗ = 2.447

205.52± 2.447(10.29)

√
1

8
+

(2− 15.8/8)2

1.235
, gives 205.52± 8.92

which is [196.60, 214.44]. If the company invests $2000 the mean company sales fall with 95%
confidence between $196600 and $214440.

We expect 95% of sale numbers to fall within the following interval, when the company invests $2000
in advertisement.

205.52± 2.447(10.29)

√
1 +

1

8
+

(2− 15.8/8)2

1.235
, gives 205.52± 26.71

which is [178.81, 232.23].
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