
Contents

1 Multiple Linear Regression Models 2
1.1 First-Order-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Interaction Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Polynomial (Higher Order) Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Including qualitative variables (dummy variables) . . . . . . . . . . . . . . . . . . . . 19
1.5 Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1



1 Multiple Linear Regression Models

The Multiple Linear Regression Model is introduced as a mean of relating one numerical response
variable y to two or more independent (or predictor variables).
This section presents

� different models allowing numerical as well as categorical independent variables

� how to use sample data for obtaining estimates and confidence intervals for the model param-
eters and how to interpret these

� the assumptions implied by the multiple linear regression model and how to use sample data
to check if it reasonable to assume that they are met

� how to apply the model and predict future values and estimate the mean response for given
values of the predictor variables

The Multiple Linear Regression Model

y = β0 + β1x1 + β2x2 + . . .+ βkxk + e, e ∼ N (0, σ)

where

� y is the response (dependent) variable

� k is the number of predictors

� x1, x2, . . . , xk are the predictor (independent) variables

� The mean of the response, E(y) = β0 + β1x1 + β2x2 + . . . + βkxk, is the deterministic part of
the model

� βi describes the contribution of the predictor variable xi

� e is the random error, which is assumed to be normally distributed with mean 0 and standard
deviation σ.

The following sections introduce choices for the independent variables, when building a model for a
response of interest.

1.1 First-Order-Model

The term first indicates that the predictor variables are only included in their first power, later
higher-order terms will be introduced.

The First-Order Model in numerical Variables

y = β0 + β1x1 + β2x2 + . . .+ βkxk + e, e ∼ N (0, σ)

where x1, x2, . . . , xk are independent numerical variables (each variable measures a different concept).
β0 is the mean of y, when all predictor variables equal 0.
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βi is the slope of the line relating y with xi when all other independent variables are held fixed. It
gives the change in the mean of y, for a 1 unit increase in xi, leaving all other predictors fixed.

When choosing estimates for the parameters of the model, the criteria is the same as for the Simple
Linear Regression Model
Make

SSE =
∑

(yi − ŷi)2

as small as possible by choosing β̂1, . . . β̂k, where ŷ = β̂0 + β̂1x1 + β̂2x2 + . . .+ β̂kxk.

Finding the estimates involves solving k + 1 equations for k + 1 parameters. This is relatively easy
with methods from linear algebra, but tedious without.
In this course we will rely on the computer to calculate the estimates. The estimate for σ will be
still the square root of the MSE.

σ̂ = s =
√
MSE =

√
SSE

n− (k + 1)

The degrees of freedom for Error are dfE = n− (k + 1).

Example 1
Feeding of snow goslings

Botanists were interested in predicting the weight change (in%) of snow goslings as a function of
digestion efficiency (in%), percent of acid-detergent fibre in their feed, and diet (plants versus duck
chow (duck food)). The acid-detergent fibre is the least digestible portion in plant food.
The goal will be to fit a first order model to the weight change of the goslings:

E(y) = β0 + β1x1 + β2x2

y = weight change, x1 = digestion efficiency, x2 = acid-detergent fibre.

At this point diet can not be included with the model since it is a categorical variable.

1. Scatterplots: In a first step check if a linear model is reasonable choice for describing the
relationship between diet efficiency, acid-detergent fibre, and weight change.

Obtain scattergrams for

(a) the response variable with each predictor variable, and

(b) each pair of predictor variables.

A linear model can be considered reasonable if the response variable shows a linear relationship
with each explanatory variable, or at least does not demonstrate a non-linear relationship, and

the scattergrams for the pairs of explanatory variables do not show a strong linear relationship.

To understand this requirement, assume they would relate in a perfect linear relationship. Then
in the Multiple Linear Regression Model they would bear the same information on the response
variable and one of them would be redundant.
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The matrix plot shows that the relationship between weight change and the two predictor
variables show a linear trend, which supports the choice of the model. But the scattergram for
the predictors, digestion efficiency and fibre, also displays a strong linear relationship, which
might imply that one of them is redundant. In the analysis one has to check for signs of this
effect.

2. Estimation: The estimates of the coefficients and the confidence intervals for those produced
by SPSS are:

Coefficients
Unstandardized Standardized

Coefficients Coefficients 95% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound Upper Bound

(Constant) 12.180 4.402 2.767 .009 3.276 21.085
digeff -.027 .053 .115 .496 .623 -.135 .082

adfiber -.458 .128 -.826 -3.569 .001 -.717 -.198

a Dependent Variable: wtchng

From the table we get:

β̂0 = 12.18, β̂1 = −0.027, and β̂2 = −0.458

resulting in the estimated multiple linear regression function

ŷ = 12.18− 0.027x1 − 0.458x2

The ANOVA table (find the table below)) provides MSE = 12.387, which results in s =√
12.387 = 3.5195.
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3. Interpretation: β1 = −0.27 gives the mean change in weight difference for a one percent
increase in the digestion efficiency when keeping the amount of fibre being fed to the gosling
constant. Based on the sample we estimate that the weight drops in average by 0.027 percent
if the digestion efficiency increases one percent and the acid detergent fibre remains the same.

Caution: We estimate a drop in weight change when increasing the digestion efficiency, this
is in contradiction to what we observe in the scattergram for weight change and digestion
efficiency. The reason for the discrepancy between the two is the high correlation between
digestion efficiency and the fibre variable, we already observed in the scattergram.

Try the interpretation of β2 is the value consistent with the scattergram?

β0 does not have a meaningful interpretation in this example, it would be the mean change in
weight if the digestion efficiency is at 0% and the acid-detergent fibre is at 0 %.

Overall Model Utility and Inference about the Parameters

The multiple coefficient of determination, R2, is calculated by

R2 =
SSyy − SSE

SSyy
=

Explained variability

Total variability

Just as in the simple linear regression model the coefficient of determination measures how much of
the sample variability in the response, y, can be explained through the linear model applied.
For the example the output shows an R2 = 0.529. About 53% of the variation in the weight change
can be explained through different values in acid-detergent fibre and digestion efficiency.

R2 close to one indicates a very good fit of the model and that the model is appropriate for estimation
and prediction of the response. R2 close to zero indicates lack of fit.
One needs to be careful though, because if the sample size equals the number of predictors R2 = 1,
and a high number of parameters ensures a goof fit, even though the population might not be
represented by the estimated model. In order to avoid this pitfall one should use a much larger
sample than predictors when fitting a multiple linear regression model.

In order to adjust for a high number of parameters (predictors) in relation to the sample size, the
adjusted-R2 = R2

a is used to measure the fit of a multiple linear regression model,

R2
a = 1− n− 1

n− k − 1

(
SSE

SSyy

)

R2
a will not automatically increase when parameters are added to the model. Smaller models are

preferred over larger models.
Usually the adjusted coefficient of determination is reported for multiple linear regression models.

For gosling example R2
a = 0.502, which is only a little lower than R2.

Beyond reporting and interpreting R2 and R2
a for assessing model fit, model utility is tested.

If all slope parameters would be 0, then nothing could be learned about the response from the
predictor variables in the model. Therefore a test should be conducted to disprove that the slopes
are all zero.

Test H0 : β1 = β2 = . . . = βk = 0 versus Ha : at least one slope is different from 0. The test statistic
is based on

F =
(SSyy − SSE)/k

SSE/(n− k − 1)
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which is the ratio of the variance in the response explained by the model and the variance remaining
unexplained.

A large ratio indicates that most of the variability in y could be explained, and a small value indicates
that barely any variability could be explained. To judge if the ratio is small or large the degrees of
freedom have to be taken into account.

The F-Test for overall usefulness of the model (Model Utility Test)

1. Hypotheses: H0 : β1 = β2 = . . . = βk = 0 versus Ha : at least one is not zero. Choose α.

2. Assumptions: Random sample, the multiple regression model is an appropriate description of
the relationship between predictors and response variables.

3. Test Statistic:

F0 =
(SSyy − SSE)/k

SSE/(n− k − 1)
with dfn = k, dfd = n− k − 1.

4. P-value = P (F > F0)

5. Reject H0 if P-value< α, other wise do not reject H0.

6. Put into context.

Continue gosling example:

1. Hypotheses: H0 : β1 = β2 = 0 versus Ha : at least one is not zero. Choose α.

2. Assumptions: Random sample. The assumption of the multiple regression model hold, the
scatterplots looked reasonable, but normality of the error and homoscedasticity still needs
checking.

3. Test Statistic from output:

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

Regression 542.035 2 271.017 21.880 .000(a)
Residual 483.084 39 12.387

Total 1025.119 41

a Predictors: (Constant), adfiber, digeff

b Dependent Variable: wtchng

F0 =
(SSyy − SSE)/k

SSE/(n− k − 1)
= 21.880

with dfn = 2, dfd = 42− 2− 1 = 39.

4. P-value = P (F > F0)¡.0005

5. Reject H0 since P-value< α = 0.05
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6. At significance level of 0.05 the test confirms the conclusion drawn from the coefficient of
determination, the data provide sufficient evidence that the model is useful in explaining the
weight change of snow goslings.

Once established that the model seems to describe the relationship between the response and the
predictor variables, start asking questions about the values of the parameters, and which of them
show a significant influence on the response variable.
This question can be answered in two ways, find confidence intervals for the parameters, or conduct
statistical tests.

(1− α)× 100% Confidence Interval for a slope parameter βi

β̂i ± t∗sβ̂i

The estimates β̂i and sβ̂i , should be obtained through SPSS, formulas are beyond the scope of this
course.

Continue example:
From SPSS:
Confidence interval for β1: [-0.135, 0.082]
Confidence interval for β2: [-0.717, -0.198]
Since 0 falls with in the 95% CI for β1, conclude that β1 might be 0, and at confidence level of 95%
the digestion efficiency has no significant influence on the weight change.
Since the confidence interval for β2 does not include 0, deduce that at confidence level of 95% β2 6= 0
and in fact β2 < 0, that is the less acid-detergent fibre in the food, the more the goslings gain weight.

Another way of answering if individual variables have a significant effect on the mean response is a
Test of an individual slope parameter βi.

1. Hypotheses: Parameter of interest βi.

test type hypotheses
upper tail H0 : βi ≤ 0 vs. Ha : βi > 0
lower tail H0 : βi ≥ 0 vs. Ha : βi < 0
two tail H0 : βi = 0 vs. Ha : βi 6= 0

Choose α.

2. Assumptions: Regression model is appropriate

3. Test statistic:

t0 =
β̂i
sβ̂i
, df = n− k − 1

4. P-value:

test type P-value
upper tail P (t > t0)
lower tail P (t < t0)
two tail 2P (t > abs(t0))

5. Decision: If P − value < α reject H0, otherwise do not reject H0.

6. Put into context
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Continue example: Test if an increase in acid fibre in the food decreases the weight increase in
snow goose goslings when correcting for diet efficiency.

1. Hypotheses: Parameter of interest β2. the higher x2 the lower y:

lower tail H0 : β2 ≥ 0 vs. Ha : β2 < 0

Choose α = 0.05.

2. Assumptions: checked before.

3. Test statistic: (from first table for this example)

t0 = −3.569, df = 39

4. P-value:

The two-tailed P-value is 0.001, since this is a lower tailed test and the test statistic is negative,
the P-value=0.001/2=0.0005

5. Decision: Since P-value< α, reject H0.

6. The test gives the same result as the confidence interval, at 5% significance level the data
provide sufficient evidence that increasing the acid-detergent fibre in the food results in a drop
in the weight change.

Be careful interpreting the result, when failing to reject H0 : βi = 0. This could be due to

1. there is no relationship between y and xi, or

2. there is a relationship, but it is not linear, or

3. a type II error occurred.

Residual Analysis
Before applying the model for prediction and estimation check if the assumptions are met.

� the error, e, in the regression model is normally distributed with mean 0 and standard deviation
σ

� the standard deviation is the same for all values of the predictors.

In order to check these assumptions the residuals have to be calculated and

1. be displayed in a histogram and/or QQ-Plot, to asses if the assumption that they come from
a normal distribution is reasonable, and

2. residual plots for all predictor variables (scattergram of predictor and residuals) should be
obtained to illustrate that the standard deviation of the error does not depend on the value of
the predictors.
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Continue example:

1. The histogram and QQ-plot for the residuals in our example:

Both graphs do not indicate a strong deviation from normality. They are no cause for concerns,
about the assumptions in the model not being met.

2. In addition check that the values of the predictor variables do not influence the spread of the
residuals:

Both graphs display even scatter around zero, which is not changing for different values of ”digeff”,
and ”adfibre”.
The Residual Analysis support that the assumptions of the model are met, and for that reason the
conclusion derived so far seem valid.

Now that it has been established that the model is appropriate to describe the relationship between
y and the predictor variables and know which of the variables significantly influences the response
variable, the model can be used to predict future values of y and estimate E(y) for chosen values of
the predictor variables.
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Estimation and Prediction Using the Model
Remember the difference between

� estimating the mean of y, E(y), for given values of x1, . . . , xp, and

� predicting a future value of y for given values of x1, . . . , xp.

For both cases give an interval:

� when estimating E(y), give a confidence interval for the mean of y for a chosen level of
confidence for chosen values of x1, . . . , xp.

� when predicting y, give a prediction interval which shall include a certain proportion of mea-
surements of y for the chosen values of x1, . . . , xp.

Continue example:
To predict the weight change in a gosling with digestion efficiency of x1 = 21% and being fed food
including x2 = 23% acid-detergent fibre use SPSS (use the Save button within Linear Regression).

The 95% prediction interval (from SPSS) is given to be [ -6.16257, 8.34843].
95% of weight changes of goslings with x1 = 21 and x2=23 fall between -6.2% and 8.3%.

The mean weight change of goslings with 21% digestion efficiency and who are fed 23% acid-detergent
fibre is estimated through a 95% CI to fall between -.31 % and 2.5%. This confidence interval indicate
that there is no significant mean weight change for snow goslings with 21% digestion efficiency who
are fed 23% of acid-detergent fibre.

1.2 Interaction Models

Similarly as in ANOVA, the Regression model can be used to investigate if explanatory variables
interact in their effect on the response.
The first-order model implies, that the response variable depends on 2 or more predictor variables
in a linear fashion. For simplicity assume only 2 predictors.
Then, when we know the value of x2 = x2p, then

E(y) = β0 + β1x1 + β2x2p = β0 + β2x2p︸ ︷︷ ︸
intercept

+ β1︸︷︷︸
slope

x1

is a line relating x1 with E(y). The slope of this line is β1 and intercept is β0 + β2x2p.

In conclusion: E(y) depends on x1 with the same slope for all values of x2
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The lines for different values of x2 are parallel!
Including an interaction term with the model will permit to fit lines that are not parallel and to test
if a model allowing non-parallel lines provide a significant better fit of the model to the population.
The new model (interaction model) allows that the slopes of the lines relating x1 with y differ for
different values of x2.
This phenomenon indicate that x1 and x2 interact in their effect on y. The relationship between x1
and y depends on the value of x2.

For example consider adding different additives for watering plants (assume beans).
y = height of plant after 4 weeks
x1 = concentration of additive
x2 = additive (sugar, fertilizer, salt)
Depending on what is added to the water the plant will either grow slower, faster, or maybe even
die.
The response of the plant to the concentration of the additive depends on the additive.
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A Multiple Linear Regression Model including interaction for two predictors

y = β0 + β1x1 + β2x2 + β3x1x2 + e, e ∼ N (0, σ)

where

� y is the dependent variable

� x1, x2 are the independent (predictor) variables

� E(y) = β0 + β1x1 + β2x2 + β3x1x2 is the deterministic part of the model

� β1 + β3x2 represents the change in y for a 1 unit increase in x1

� β2 + β3x1 represents the change in y for a 1 unit increase in x2

� e is the random error, which is assumed to be normally distributed with mean 0 and standard
deviation σ.

to introduce interaction in SPSS, a new variable has to be created x3 = x1x2 and included in the
model.
For each observation in the sample the product of their measurements for x1 and x2 is calculated
and this product is used as the third predictor variable in the model.
The analysis is then conducted exactly in the same way as for the first-order mode, but the inter-
pretation of the slopes and test changes.

Continue example:
The model to predict the weight change of snow goslings through their digestion efficiency and the
amount of acid-detergent fibre they were fed, including an interaction term is:

y = β0 + β1x1 + β2x2 + β3x1x2 + e, e ∼ N (0, σ)

y = weight change, x1 = digestion efficiency, and x2 = acid-detergent fibre

The scatterplots have already been assessed.

Find the estimates for the model parameters (using SPSS):

Coefficients
Unstandardized Standardized

Coefficients Coefficients 95% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound Upper Bound

(Constant) 9.561 5.794 1.650 .107 -2.169 21.290
digeff .024 .090 .106 .270 .788 -.159 .207

adfiber -.357 .193 -.644 -1.845 .073 -.748 .035
eff-fiber -.002 .003 -.131 -.702 .487 -.009 .004

a Dependent Variable: wtchng

gives β̂0 = 9.561, β̂1 = 0.024, β̂2 = −0.357, and β̂3 = −0.002, giving

ŷ = 9.561 + 0.024x1 − 0.357x2 − 0.002x1x2
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To calculate an estimate for σ find MSE in the ANOVA table:

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

Regression 548.216 3 182.739 14.561 .000(a)
Residual 476.903 38 12.550

Total 1025.119 41
a Predictors: (Constant), adfiber, digeff, eff-fibre

b Dependent Variable: wtchng

MSE = 12.550, so σ̂ = s =
√

12.55 = 3.543.

Next check the utility of the model by interpreting the adjusted R2 and conducting a model utility
test:
Adjusted Coefficient of Determination: R2

a = 0.498, indicates that about 50% of the variation in the
weight change can be explained through digestion efficiency and the amount of fibre fed, and their
interaction.

Model Utility Test

1. Hypotheses: H0 : β1 = β2 = β3 = 0 versus Ha : at least one is not zero. Choose α = 0.05.

2. Assumptions: Random sample + residual analysis to check normality and homogeneity.

3. Test Statistic from the ANOVA table:

F0 =
(SSyy − SSE)/k

SSE/(n− k − 1)
= 14.561

with dfn = 3, dfd = 42− 3− 1 = 38.

4. P-value = P (F > F0)¡.0005

5. Reject H0 since P-value< α = 0.05

6. At significance level of 0.05 the test confirms our conclusion based on the coefficient of deter-
mination, we have sufficient evidence that the model is useful in explaining the weight change
of snow goslings.

To decide if interaction is present, and which variable (beyond the interaction) influences the weight
change, conduct a test for each slope to be significantly different from 0.

1. Hypotheses (test all three simultaneously):
H0 : β1 = 0 vs. Ha : β1 6= 0,
H0 : β2 = 0 vs. Ha : β2 6= 0,
H0 : β3 = 0 vs. Ha : β3 6= 0

Choose α = 0.05.

2. Assumptions: See above.
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3. Test statistic (from SPSS, see above):
For β1 : t0 = 0.270, df = 39
For β2 : t0 = −1.845, df = 39
For β3 : t0 = −0.702, df = 39

4. P-value:
For β1 : P − value = 0.788,
For β2 : P − value = 0.073
For β3 : P − value = 0.487

5. Decision: None of the P-values is smaller than 0.05 we can not reject any of the null hypotheses.

6. The tests are non conclusive, we could not find interaction none of the two factors is shown to
have a significant influence on the weight change of the goslings.

In our model building process, we should decide, not to include the interaction with the model and
go back to the first–order model only including the amount of fibre as a predictor, because digestion
efficiency neither showed a significant main effect nor interaction with the amount of fibre on the
weight change of gosling when correcting for the influence of the amount of fibre.

14



1.3 Polynomial (Higher Order) Models

We will now move away from the assumption that the predictor variables and the mean of the
response variable share a linear relationship. Instead we will permit that the variables are related
through polynomials.
Polynomials of degree k are functions of the form

p(x) = β0 + β1x+ β2x
2 + . . .+ βkx

k

Example 2

When fitting polynomials to data, only part of the function has to fit. For example to model a
concave upward relation ship, we can use a polynomial function of degree 2 and only the upward
branch of the function will be fitted.
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Example 3
In the scattergram below the corn yield (bu/acre) versus rainfall (inches) in six U.S. corn producing
states, recorded for each year from 1890 to 1927 is displayed.

A straight line regression model is not adequate. Although increasing rainfall is associated with
higher mean yield for rainfalls up to 12 inches, increasing rainfall at higher levels is associated with
no change or decrease in the mean yield.
One possible model would be a second order model

y = β0 + β1x+ β2x
2 + e

where y = corn yield and x = rain fall.

For fitting a higher order model we go through the same steps, as before

1. Analyze scattergram, to check if model is adequate.

2. Estimate the parameters of the model (and interpret)

3. Check model utility (R2, R2
a, model utility test)

4. Find which factors in the model are relevant.

5. Check model assumptions

6. predict and estimate

Continue Example:

1. We looked at the scattergram before and found that a 2nd order model seems to be appropriate.

2. Obtain a variable rain-sq= x2. And obtain the estimates with SPSS by including rain and
rainsq as predictor in the model.
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Coefficients
Unstandardized Standardized

Coefficients Coefficients
Model B Std. Error Beta t Sig.

(Constant) -5.015 11.442 -.438 .664
rainfall 6.004 2.039 3.117 2.945 .006
rainsq -.229 .089 -2.739 -2.588 .014

Dependent Variable: yield

We find β̂0 = −5.015, β̂1 = 6.004, β̂2 = −.229, so ŷ = −5.015 + 6.004x− 0.229x2.

The negative estimate for β2 is consistent with the graph, being concave downward.

The interpretation of β̂0 would be the mean yield, for a rainfall of 0 inches, this is not meaningful.
Usually the coefficients β1 and β2 will have no meaningful interpretation, beyond the comment
about the concavity of the quadratic function.

3. The goodness of the fit is measured through R2
a = 0.256. 25.6% of the variation in the corn

yield can be explained by a quadratic model in the rainfall. It indicates that rainfall plays a
role in predicting the yield of corn, but other factors should be considered if estimation and
prediction shall be tried.

The model utility test would be
H0 : β1 = β2 = 0 versus Ha : at least one is not 0. α = 0.05

Assume that the model describes the population, to be checked with a residual analysis.

Test statistic:

17



ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

Regression 209.022 2 104.511 7.382 .002(a)
Residual 495.529 35 14.158

Total 704.551 37

a Predictors: (Constant), rainfall, rainsq

b Dependent Variable: yield

F0 = 7.382, dfn = 2, dfd = 35 and P-value=0.002.

Since the p-value is smaller than the significance level we reject H0, and decide that at least
one of the coefficient is not 0, and the model is a useful predictor for the yield of corn.

4. To check if the model is in fact quadratic or the linear term would have been enough, we test
H0 : β2 = 0 versus Ha : β2 6= 0. α = 0.05

Assume that the model describes the population, to be checked with a residual analysis.

Test statistic: From the coefficient table we, find t0 = −2.588 and df = dfE = 35, with
P-value=0.014.

We reject H0, and conclude that the quadratic model is appropriate.

A test for β1 = 0 would also be significant, and we conclude that the linear term should be
included in the model.

5. For the above conclusion all to be correct the model assumptions have to be met. A residual
analysis should be done.

The histogram is not too different from a bellshaped curve to be reason for concern, about the
assumption not being met.

And the residual plot shows scatter around 0 of about the same amount, independent from the
rainfall, indicating that the assumption that the standard deviation is independent from the
rainfall seems to be met.
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6. To predict the yield of corn for a rainfall of 13 inches, we find a 95% prediction interval with
SPSS: [26.43, 42.13]. In areas with 13 inches of rain, we should expect that 95% of fields
yield between 26.43 and 42.13 bu/acre. It is a very large interval judging by the scattergram,
reflecting the relatively small R2

a.

1.4 Including qualitative variables (dummy variables)

So far we studied how with a Multiple Linear Regression Model we can model a numerical response
variable in dependency on other numerical predictor variables. Another strength of the model is that
we can also include categorical variable with the model, by introducing dummy variables.
To illustrate, consider that we want to model the weight of a person, y, using the height, h, and the
gender (male or female).
To do so, we introduce a dummy variable using values 0 or 1 for coding the qualitative variable
gender.

g =

{
1 if male
0 if female

and propose the model

y = β0 + β1h+ β2g + e

assuming that the error e is normally distributed with mean zero and standard deviation σ.
In this model the mean of a person would depend on the gender:

For males (g = 1): E(y) = β0 + β1h+ β2
For females (g = 0): E(y) = β0 + β1h

In the line relating the mean weight of males with their hight the slope is β1 and the intercept β0+β2.
In the line relating the mean weight of females with their hight the slope is β1 and the intercept β0.
(diagram)
In conclusion β2 is the difference between the mean weight for mean and women, at the same hight.
By testing (based on sample data) if β2 6= 0, we test if the mean weight of men and women is
significantly different when correcting for their height. That is, if their mean weight is different, even
if their height is the same.

If we want to include a qualitative variable with more than 2 levels, we have to introduce more than
1 dummy variable.

Including one qualitative variable with k levels in a multiple regression model
For including the k levels of the qualitative variable introduce k − 1 dummy variables, d2, d3, . . . , dk
(start with 2). Where di is the dummy variable for level i.

di =

{
1 if categorical variable has level i
0 otherwise

Then the model, with x being an additional numerical variable, is

y = β0 + β1x+ β2d2 + β3d3 + . . .+ βkdk + e

In this model βi (i = 2, . . . , k) is the difference between the mean of y for level i and the mean of y
for level 1, when keeping x fixed, because
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For level 1: E(y) = β0 + β1x
For level i: E(y) = β0 + β1x+ βi

We could include more numerical variables, interaction terms, or higher order terms with this model.

Example 4
In the snowgeese example an additional variable was included in the data set, being the type of food
(chow or plants). This is a categorical variable we will now include in the model. Since the variable
has 2 levels, we need to include 2-1=1 dummy variables

dp =

{
1 if plant was fed i
0 if chow was fed

We also include x1 = digestion efficiency and x2 = acid− detergentfibre with the model to explain
y = weight change:

y = β0 + β1x1 + β2x2 + β3dp + e

Scattergrams have already been produced to rectify the linear model for x1 and x2.
For estimating the parameters, the dummy variable has to be created first. In SPSS use Transform>Compute
Variable, Target variable: dp, and numeric expression: (diet=’Plants’).
Then as usual the linear regression model is fitted, producing the following coefficient table:

Coefficients
Unstandardized Standardized

Coefficients Coefficients
Model B Std. Error Beta t Sig.

(Constant) 12.180 4.460 2.731 .010
digeff -.026 .054 -.114 -.484 .631

adfiber -.462 .168 -.834 -2.752 .009
dp .119 2.869 .010 .041 .967

a Dependent Variable: wtchng

The deterministic part of the model is estimated as ŷ = 12.18− 0.026x1 − 0.462x2 + 0.119dp
Estimating that the mean weight change of goslings being fed plants is 0.119% higher than in goslings
being fed chow, if the digestion efficiency and the fibre are the same.
The model utility test shows again a useful model (F0 = 14.214, dfn3, dfd = 38, P-value=0.000) and
Ra2 = 0.492.
Testing for influence of the different predictors on the weight change. We find at significance level of
0.05, that only the amount of acid-detergent fibre has an influence on the weight change (if correcting
for fibre and diet), but the data do not provide sufficient evidence that digestion efficiency or the
diet (plants versus chow) have an impact on the weight change, if correcting for the other factors.
Residual Analysis would establish that the model assumptions are met and our results hold.

In addition we can introduce interaction terms for the dummy variable and the numerical independent
variables, which would give us a tool for checking if the slope parameters in the weight change are
different for the different diets. Compare with the discussion about interaction.
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1.5 Model Building

In the last sections we discussed how to model different type of dependencies within a multiple linear
regression model. We went from first-order model, included interaction of 2 numerical variables,
included higher order terms to fit curves, and finally saw how to include categorical variables with
the model.
The challenge we now face is the process of choosing the ”best” model.
In general we prefer parsimonious models, i.e. models that have the least number of variables, but
we also want to explain the response variable as good as possible.
In order to achieve this goal, stepwise procedures are proposed.

Stepwise procedure
For a stepwise procedure the user first chooses the response variable and proposes a list of possible
predictor variables, including interactions that might be meaningful, higher order terms, and dummy
variables, x1, . . . , xk.
In a first step we now analyze all models with

E(y) = β0 + β1xi, 1 ≤ i ≤ k

for all k predictor variables, and obtain for each model the test statistic for H0 : β1 = 0 versus
H0 : β 6= 0.
The variable with the highest absolute value of the test statistic (indicating a significant influence
on the response variable) is chosen to be included with the model, call this variable x1.

In a second step, we now search for the model that leads to the best 2 variable model, by adding
each of the remaining variables to x1 in the model:

E(y) = β0 + β1x1 + β2xi, 2 ≤ i ≤ k

(for all k − 1 predictor variables not in the model at this point.)
Again we choose to include as the second variable the one that produces the highest absolute value
of the test static (indicating a significant influence on the response variable) for testing H0 : β2 = 0
versus Ha : β2 6= 0, when keeping x1 constant.

In subsequent steps, we check if additional variables can be entered in the model in the same way as
in steps one and two.
The procedure stops, when no more significant test statistics can be found.

Example 5
Data from ”SPSS, survival manual” 3rd edition, by Julie Pallant
This is a real data file, condensed from a study that was conducted in Australia by students in
Educational Psychology. The study was designed to explore the factors that impact on respondents’
psychological adjustment and wellbeing. The survey contained a variety of validated scales measuring
constructs that the extensive literature on stress and coping suggest influence people’s experience of
stress. The scales measured self-esteem, optimism, perceptions of control, perceived stress, positive
and negative affect, and life satisfaction. A scale was also included that measured people’s tendency
to present themselves in a favourable or socially desirable manner. The survey was distributed to
members of the general public in Melbourne, Australia and surrounding districts. The final sample
size was 439, consisting of 42 per cent males and 58 per cent females, with ages ranging from 18 to
82 (mean=37.4).
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tpstress total perceived stress
tpcoiss total perceived control of internal states
tmast Total Mastery, High scores indicate higher levels of perceived control over events and circumstances
tmarlow Total social desirability, score on Marlowe-Crowne scale, which measures the dgree to which people try to present themselves in a positive light
age age in years
sex sex, 1=males, 2=females
smoke Do you smoke? 1=yes, 2=no

In the example we will explore how well the perceived stress can be predicted by tpcoiss, tmast,
tmarlow, age, and sex.
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