Grant MacEwan University

STAT 252 – Dr. Karen Buro Formula Sheet

Descriptive Statistics

- Sample Mean: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Sample Variance: $s^2 = \frac{\sum_{i=1}^n (x_i \bar{x})^2}{n-1} = \frac{\sum_{i=1}^n x_i^2 \frac{(\sum_{i=1}^n x_i)^2}{n}}{n-1}$
- Sample Standard Deviation: $s = \sqrt{\text{Sample Variance}} = \sqrt{s^2}$

Estimation

Parameter	Estimator	SE(Estimator)	Approximate Confidence Interval
μ	\bar{x}	$\frac{\sigma}{\sqrt{n}}$	$ar{x} \pm t_{lpha/2} rac{s}{\sqrt{n}}$
$\mu_1 - \mu_2$	$\bar{x}_1 - \bar{x}_2$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
$\mu_1 - \mu_2$	\bar{x}_d	$\frac{\sigma_d}{\sqrt{n}}$	$\bar{x}_d \pm t_{lpha/2} rac{s_d}{\sqrt{n}}$

t-Test Statistics

• Test Statistic for 1-sample t-Test concerning μ if σ is unknown

$$t_0 = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} \qquad df = n - 1$$

• Test Statistic for two–sample *t*-Test for Comparing Two Population Means:

$$t_0 = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}, \quad df = \min(n_1 - 1, n_2 - 1)$$

• Test Statistic for paired t-Test for Comparing Two Population Means:

$$t_0 = \frac{\bar{x}_d - d_0}{\left(\frac{s_d}{\sqrt{n}}\right)} \qquad df = n - 1$$

One-way Analysis of Variance (1-way ANOVA)

- Total Sum of Squares: $TotalSS = \sum (x_{ij} \bar{x})^2 = \sum x_{ij}^2 \frac{(\sum x_{ij})^2}{n}$, $df_{Total} = n 1$ where \bar{x} is the overall mean, from all k samples and $n = n_1 + n_2 + \ldots + n_k$.
- Sum of Squares for treatments: $SST = \sum n_i (\bar{x}_i \bar{x})^2$, $df_T = k 1$ with \bar{x}_i = sample mean of observations in sample *i*.
- Sum of Squares for Error: $SSE = (n_1 1)s_1^2 + (n_2 1)s_2^2 + \ldots + (n_k 1)s_k^2$, $df_E = n k$ with s_i is the standard deviation of observation from sample *i*.
- ANOVA–Table

Source	df	SS	MS = SS/df	F
Treatments/Groups	k-1	SST	MST = SST/(k-1)	MST/MSE
Error	n-k	SSE	MSE = SSE/(n-k)	
Total	n-1	TotalSS		

• Analysis of contrasts in the ANOVA model:

$$\gamma = C_1 \mu_1 + C_2 \mu_2 \dots + C_k \mu_k$$
, with $C_1 + C_2 + \dots + C_k = 0$

Corresponding estimator

$$c = C_1 \bar{x}_1 + C_2 \bar{x}_2 \dots + C_k \bar{x}_k, \quad SE(c) = s_p \sqrt{\frac{C_1^2}{n_1} + \frac{C_2^2}{n_2} + \dots + \frac{C_k^2}{n_k}}$$

with the pooled estimator for σ : $s_p = \sqrt{MSE}$. $(1 - \alpha)100\%$ confidence interval for γ : $c \pm t^*SE(c)$, df = n - kTest statistic for a *t*-test concerning γ : $t_0 = \frac{c}{SE(c)}$, df = n - k

Multiple Comparisons (Bonferroni Procedure)

Experiment wise error rate $=\alpha$, m = number of comparisons, comparison wise error rate $\alpha^* = \alpha/m$,

Then the margin of error (ME) for comparing treatment *i* with treatment *j* is:

$$ME_{ij} = t^{d\!f_E}_{\alpha^*/2} \; \sqrt{MSE} \; \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$$

The Randomized Block Design

k treatments, b blocks

- Total Sum of Squares: $TotalSS = \sum (x_{ij} \bar{x})^2 = \sum x_{ij}^2 \frac{(\sum x_{ij})^2}{n}, \quad df_{Total} = n 1$ where \bar{x} is the overall sample mean.
- Sum of Squares for treatments: $SST = \sum b(\bar{x}_{Ti} \bar{x})^2$, $df_T = k 1$ with \bar{x}_{Ti} = sample mean of observations for treatment *i*.
- Sum of Squares for blocks: $SSB = \sum k(\bar{x}_{Bj} \bar{x})^2$, $df_B = b 1$ with \bar{x}_{Bj} = sample mean of observations for block j.
- Sum of Squares for Error: SSE = TotalSS SST SSB, $df_E = n k b + 1$
- ANOVA–Table for RBD

Source	df	SS	MS = SS/df	F
Treatments	k-1	SST	MST = SST/(k-1)	MST/MSE
Blocks	b-1	SSB	MSB = SSB/(b-1)	MSB/MSE
Error	n-k-b+1	SSE	MSE = SSE/(n-k-b+1)	
Total	n-1	TotalSS		

Factorial Design (here: 2-way ANOVA)

Factor A at a levels, factor B at b levels

ANOVA–Table for 2 factorial design

Source	df	SS	MS = SS/df	F
Factor A	a-1	SS(A)	MS(A) = SS(A)/(a-1)	MS(A)/MSE
Factor B	b - 1	SS(B)	MS(B) = SS(B)/(b-1)	MS(B)/MSE
Inter $A * B$	(a-1)(b-1)	SS(A * B)	MS(A * B) = SS(A * B)/(a - 1)(b - 1)	MS(A * B)/MSE
Error	df_E	SSE	$MSE = SSE/df_E$	
Total	n-1	TotalSS		

 $df_E = n - a - b - (a - 1)(b - 1) + 1$

Test statistic for Model Utility Test:

$$F = \frac{\frac{(SS(A) + SS(B) + SS(A * B))}{(a-1+b-1+(a-1)(b-1))}}{MSE}, \quad df_n = a - 1 + b - 1 + (a-1)(b-1), df_d = df_E$$

Non Parametric Methods

• Sign Test:

Test Statistic S_0 = number of measurements supporting H_a (for 2-tailed, the larger of the two).

• Wilcoxon Rank Sum Test

Test statistic: Both sample sizes are at least 10, T_1 =sum of ranks for sample 1.

$$z_0 = \frac{T_1 - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1 n_2(n_1 + n_2 + 1)}{12}}},$$

• Wilcoxon Signed Rank Test

Test statistic: Sample size of pairs is at least 10, T_+ =sum of ranks for positive differences.

$$z_0 = \frac{T_+ - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}},$$

• Kruskal-Wallis H Test Test statistic:

$$H_0 = \frac{12}{n(n+1)} \sum n_i (\bar{R}_i - \frac{n+1}{2})^2, \quad df = k - 1$$

 \bar{R}_i = mean rank for sample *i*.

Multiple Comparison for Kruskal Wallis Test (Bonferroni procedure)

Choose experiment wise error rate α .

- 1. When comparing k distributions let m = k(k-1)/2 and the comparison wise error rate $\alpha^* = \alpha/m$.
- 2. Use the Wilcoxon Rank Sum test to compare every pair of treatments at significance level α^* .

Then all significant results hold simultaneously at experiment wise error rate of α .

Partial Correlation:

$$r_{yx_1 \cdot x_2} = \frac{r_{yx_1} - r_{x_1x_2}r_{yx_2}}{\sqrt{1 - r_{x_1x_2}^2}\sqrt{1 - r_{yx_2}^2}}$$

Simple Linear Regression

- $SS_{xy} = \sum x_i y_i \frac{(\sum x_i)(\sum y_i)}{n}$, $SS_{xx} = \sum x_i^2 \frac{(\sum x_i)^2}{n}$ and $SS_{yy} = \sum y_i^2 \frac{(\sum y_i)^2}{n}$
- Equation of least squares line (regression line): slope: $\hat{\beta}_1 = \left(\frac{SS_{xy}}{SS_{xx}}\right)$, intercept: $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$ $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$
- Estimate for σ : $SSE = SS_{yy} \hat{\beta}_1 SS_{xy}, df_E = n 2, s = \sqrt{\frac{SSE}{n-2}}$
- Pearson's Correlation Coefficient: $r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}}$
- Coefficient of determination: $R^2 = \frac{SS_{yy} SSE}{SS_{yy}}$
- Test statistic for model utility test: $t_0 = \frac{\hat{\beta}_1}{s/\sqrt{SS_{xx}}}, df = n-2$
- $(1 \alpha) \times 100\%$ CI for $\beta_1 : \hat{\beta}_1 \pm t^* \frac{s}{\sqrt{SS_{xx}}}, df_E = n 2$

• A
$$(1-\alpha)100\%$$
 CI for $E(y)$ at $x = x_p$: $\hat{y} \pm t^* s \sqrt{\frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}}}, df_E = n-2$

• A $(1-\alpha)100\%$ Prediction Interval for y at $x = x_p$: $\hat{y} \pm t^* s \sqrt{1 + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}}}, \quad df_E = n - 2$

Multiple Linear Regression

- $SSE = \sum (y_i \hat{y}_i)^2$, $df_E = n k 1$
- $\hat{\sigma} = s = \sqrt{MSE} = \sqrt{\frac{SSE}{n-k-1}}$
- Adjusted coefficient of determination: $R_a^2 = 1 \frac{n-1}{n-k-1} \left(\frac{SSE}{SS_{yy}}\right)$
- Test statistic for model utility test: $F_0 = \frac{(SS_{yy} SSE)/k}{MSE}$ (from ANOVA table), $df_n = k$, $df_d = df_E = n k 1$
- $(1 \alpha) \times 100\%$ Confidence Interval for a slope parameter β_i : $\hat{\beta}_i \pm t^* s_{\hat{\beta}_i}, df = df_E = n k 1$
- Test statistic for test about slope parameter β_i : $t_0 = \frac{\hat{\beta}_i}{s_{\hat{\beta}_i}}, \quad df = n k 1$