
1 Inference for the difference between two population

means µ1 − µ2

Consider a study for comparing the effect of two drugs on blood pressure. If µ1 and µ2 are the
mean changes in the blood pressure for drug one and two, respectively, then here one might want
to compare the two means based on sample data from the two populations including people
being treated with one or the other drug. This would call for a method using the information
in the two samples and estimating and testing properties for the two means.

When comparing two population means we need to distinguish the following two situations
describing the type of samples we will base the comparison on.

1. independent samples – example: Comparing two drugs based on data on two different
groups of individuals, each group receiving one of the drugs.

The two samples under investigation are unrelated they are independent. (one measure-
ment per individual)

2. paired/matched samples – example: Comparing two drugs based on data where one group
of individuals first receives drug A and after the effect has worn of receives drug B. (two
measurements for the same individual)

In this case the samples on the effect of drug A and drug B are related through the
individual. For every measurement in one sample you have a corresponding measurement
in the second sample.

1.1 Paired samples

In order to control extraneous factors in some studies you can use paired samples. In this
case for every individual in the sample from population 1 you find a matching individual from
population 2. And the decision is made based on the resulting sample data. In this case we
always get the same sample sizes for the two samples.

Example:

• Compare the resting pulse and pulse after exercise.

To control for all other influences, you take both measurements for every individual
observed resulting in two paired samples (before and after exercise).

We are interested in the difference in the population means µd = µ1 − µ2.

For statistical inference the differences of the paired observations

xd = sample 1 value− sample 2 value

are used.
Which then will create one sample of size n of measurements of pairwise differences.
x̄d and sd denote the mean and the standard deviation, respectively, for those differences.
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For the distribution of x̄d

1. µx̄d
= µ1− µ2, x̄d is an unbiased estimator for µ1 − µ2

2. σx̄d
= σ/

√
n, where σ is the population standard deviations of the pairwise differences.

3. If n is large than x̄d is normally distributed.

So we get for the t-score

t =
x̄d − (µ1 − µ2)

sd/
√
n

is t-distributed with df = n − 1, if n is large or the pairwise differences come from a normal
distribution.

These facts lead to the following

Paired t-Confidence Interval for µ1 − µ2

Assumption: n is large or the population distribution of differences is approximately
normal.

The C% Confidence Interval for µd = µ1 − µ2:

x̄d ± t∗n−1

sd√
n

and t∗n−1 is the C critical value of the t-distribution with n− 1 degrees of freedom (Table
D).

Reminder: For a given C, t∗n−1 is chosen such that P (−t∗n−1 < t− score < t∗n−1) = C.

Paired t-Test for Comparing Two Population Means

1. Hypotheses:

Test type

Upper tail H0 : µd ≤ d0 ⇔ µ1 − µ2 ≤ d0 versus Ha : µd > d0 ⇔ µ1 − µ2 > d0

Lower tail H0 : µd ≥ d0 ⇔ µ1 − µ2 ≥ d0 versus Ha : µd < d0 ⇔ µ1 − µ2 < d0

Two tail H0 : µd = d0 ⇔ µ1 − µ2 = d0 versus Ha : µd 6= d0 ⇔ µ1 − µ2 6= d0

Assumption: Random sample of differences, and n is large or the population distribution
of the differences is approximately normal.

Test statistic:

t0 =
x̄d − d0

sd/
√
n

with n− 1 df.
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2. P-value:

Test type P-value

Upper tail P (t > t0)

Lower tail P (t < t0)

Two tail 2 · P (t > abs(t0))

3. Decision:

If P-value≤ α reject H0,
If P-value> α do not reject H0.

4. Context

Example:
The effect of exercise on the amount of lactic acid in the blood was examined.
Blood lactate levels were measured in eight males before and after playing three games of
racquetball.

Player Before After Difference
1 13 18 -5
2 20 37 -17
3 17 40 -23
4 13 35 -22
5 13 30 -17
6 16 20 -4
7 15 33 -18
8 16 19 -3

This data results in x̄d = −13.63, sd = 8.28, n = 8
Lets test if the decrease in mean lactate levels is significant at a significance level of 0.05. That
is

1.
H0 : µb − µa ≥ 0 vs. Ha : µb − µa < 0

.

where µb (µa) is the mean lactate level before (after) three games of racquetball.

α = 0.05.

2. Assumption: The sample is a random sample and it is appropriate to assume that the
difference in lactate level is normal distributed.

3. Test statistic: with d0 = 0

t =
x̄d − d0

sd/
√
n

=
−13.63

8.28/
√

8
= −4.65597

with 7 df.
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4. P-value: Since we perform a lower tail test the P-value = P (t < t0) = P (t > abs(t0)).

Use table D from the text book. Focus on row with df = 7, observe that abs(t0) = 4.65
falls between 4.029 and 4.785. Therefore 0.001<P-value<0.0025.

5. Decision: Since P-value< 0.0025 < α = 0.05, we reject H0 and accept Ha.

6. Result: The data provide sufficient evidence that the mean lactate level after three
games of racquet ball is significantly lower than before at a significance level of 0.05.

Lets give an estimate (95% Confidence interval) for the reduction in the mean lactate level
through three games of racquetball in males.

x̄d ± t∗n−1

sd√
n

= −13.63± 2.365
8.28√

8
= −13.63± 6.938

or (−20.568;−6.696). t∗n−1 = 2.365.
Based on the sample data, we can be 95 % confident that the mean decrease in lactate level is
between 6.692 and 20.568 after three racquetball games.

Example: A company wanted to study the effect of using a large computer screen (42-inch)
versus a small sized (15-inch) screen.
They asked volunteers to perform a certain task on both screens and measured the time it took
the volunteers to complete the task for each screen size (resulting in paired observations).
Assume they only asked five volunteers (this is unreasonable, but we want a small example for
class). The data is reported below

Volunteer Small Screen Large Screen Difference=Small-Large
1 122 111 11
2 131 116 15
3 127 113 14
4 123 119 4
5 132 121 11

These data results in x̄d = 11, sd = 4.301, n = 5
Is at significance level of 5% the mean time to complete the task significantly shorter for the
large screen?
If this is correct µd = µs − µl would be greater than zero.

1.
H0 : µd ≤ 0 vs. Ha : µd > 0

.

α = 0.05.

2. Assumption: The sample is a random sample and it is appropriate to assume that the
difference in lactate level is normal distributed.

3. Test statistic: with d0 = 0

t =
x̄d − d0

sd/
√
n

=
11

4.301/
√

5
= 5.72

with 4 df.
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4. P-value: Since we perform an upper tail test the P-value = P (t > t0).

Use table D from the text book. Focus on row with df = 4, observe that 5.72 falls between
5.598 and 7.173. Therefore 0.001< P-value<0.0025.

5. Decision: Since P-value< 0.0025 < α = 0.05 reject H0 and accept Ha.

6. Result: At significance level of 5% the data provide sufficient evidence that the mean
time to complete the task is smaller for the large than for the small screen.

Lets give an estimate (95% Confidence interval) for the in the mean time to complete the task:

x̄d ± t∗n−1

sd√
n

= 11± 2.776
4.301√

5
= 11± 5.34

or [5.66, 16.34]. t∗4 = 2.776.
Based on the sample data we can be 95 % confident that the mean difference in time to complete
the task using the different screens falls between 5.7 and 16.3 seconds.
Since zero does fall below the confidence interval, we can be 95% confident that the mean
difference in time to complete the task using the different screens exceeds zero, and therefore
conclude that on average it takes longer to complete the task on the smaller screen.

1.2 Independent Random Samples

In this section we will see how to perform statistical tests for the difference of the means
µ1−µ2 and how to calculate confidence interval for the difference based on two independent
samples.

The point estimate for µ1 − µ2 that comes first to mind is the difference of the sample means
x̄1 − x̄2.
In order to do inferential statistics using this difference we have to investigate the distribution
of this statistic.

Sample Distribution of x̄1 − x̄2 from two independent samples.

• For the mean: µx̄1−x̄2 = µx̄1 − µx̄2 = µ1− µ2, so that x̄1− x̄2 is an unbiased estimator for
µ1 − µ2.

• For the variance:

σ2
x̄1−x̄2

= σ2
x̄1

+ σ2
x̄2

=
σ2

1

n1

+
σ2

2

n2

• For the standard deviation:

σx̄1−x̄2 =

√
σ2

1

n1

+
σ2

2

n2

• If n1 and n2 are both large or both populations are normal distributed then the sampling
distribution of x̄1 − x̄2 is (approximately) normal.
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The t-statistic

t =
x̄1 − x̄2 − (µ1 − µ2)√

s21
n1

+
s22
n2

Mathematical results tell us that t is approximately t-distributed with (approximate) degrees
of freedom of

df = min(n1 − 1, n2 − 1)

min(n1 − 1, n2 − 1) is the smaller of the two numbers n1 − 1 and n2 − 1.
This is all the information we need to put together a

Two–sample t-Confidence Interval for Comparing Two Population Means

Assumption: Independent random samples and n1 and n2 are large or both populations
are approximately normal distributed.

The Cx100% Confidence Interval for µ1 − µ2:

(x̄1 − x̄2)± t∗df

√
s2

1

n1

+
s2

2

n2

with

df = min(n1 − 1, n2 − 1)

and t∗df is the critical value of the t-distribution with the given number of degrees of
freedom (Table D).

Two–sample t-Test for Comparing Two Population Means

1. Hypotheses

Test type

Upper tail H0 : µ1 − µ2 ≤ d0 versus Ha : µ1 − µ2 > d0

Lower tail H0 : µ1 − µ2 ≥ d0 versus Ha : µ1 − µ2 < d0

Two tail H0 : µ1 − µ2 = d0 versus Ha : µ1 − µ2 6= d0

2. Assumption: Independent random samples, n1 and n2 are large or both populations are
approximately normal distributed.

3. Test statistic:

t0 =
x̄1 − x̄2 − d0√

s21
n1

+
s22
n2

with

df = min(n1 − 1, n2 − 1).
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4. P-value:

Test type P-value

Upper tail P (t > t0)

Lower tail P (t < t0)

Two tail 2 · P (t > abs(t0))

5. Decision:

if P-value≤ α reject H0,
if P-value> α do not reject H0.

6. Context

Example :
A company wants to show, that a vitamin supplement decreases the recovery time from the
common cold. They selected randomly 70 adults with a cold. 35 of those are randomly selected
to receive the vitamin supplements (treatment group) the remaining 35 patients receive a
placebo pills (control group). The data on the recovery time for both samples is shown below.

population 1 2
no vitamin vitamin

sample size 35 35
sample mean 6.9 5.8
sample standard deviation 2.9 1.2

Now test the claim of the company: H0 : µ1 − µ2 ≤ 0 versus Ha : µ1 − µ2 > 0 at a significance
level of α=0.05.

Assumption: Independent random samples and the sample sizes are sufficiently large.

Test statistic: with d0 = 0

t0 =
x̄1 − x̄2 − d0√

s21
n1

+
s22
n2

=
6.9− 5.8√
2.92

35
+ 1.22

35

=
1.1

0.53
= 2.07

and

df = 35− 1

P-value approach: We found t0 = 2.07 for 34 df, use df=30 in table D, observe that t0
falls between t0.025 = 2.042 and t0.02 = 2.147, so the p-value falls between 0.01 and 0.02.

p− value ≤ 0.02 < 0.05

therefore the p-value is less than α = 0.05. The test is significant at significance level
0.05, we can reject H0.
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Decision: At significance level of 5% the data provide sufficient evidence that vitamins
decrease the mean recovery time for common colds.

The 95% Confidence Interval for the difference in the mean recovery time for treatment and
control group µ1 − µ2.
The degrees of freedom are 34:

x̄1 − x̄2 ± t∗df

√
s2

1

n1

+
s2

2

n2

(6.9− 5.8)± 2.042 · 0.53

1.1± 1.082

or (0.018 ; 2.182). We are 95% confident that the difference in mean recovery time falls between
0.018 and 2.882 days (between less than half an hour and two days and 4 hours).
Also the 95% confidence interval lies entirely above 0. So that 0 is with a confidence of 95%
less than µ1 − µ2. We can state with confidence 0.95 that the recovery time without vitamin
treatment takes longer than with vitamin treatment.
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