
1 Multiple Regression Models

In this section the Multiple Regression model will be introduced as a mean of relating one
numerical response variable y to two (or more) independent or predictor variables.
We will consider first order and interaction models and discuss the implications of choosing the
different models.
Specifically we will consider the case that we have one numerical and one categorical predictor
variable to model a third response variable. For example modelling the mean prestige of an oc-
cupation (response) in dependency on income (numerical predictor) and the type of occupation
(blue collar, white collar, and professional) (categorical predictor).
How to use sample data to obtain estimates and confidence intervals for the model parameters
and how to interpret these will be presented.

The Multiple Linear Regression Model

y = β0 + β1x1 + β2x2 + . . .+ βkxk + e

where

• y is the dependent variable

• x1, x2, . . . , xk are the independent variables

• µy = β0 + β1x1 + β2x2 + . . .+ βkxk is the deterministic part of the model

• βi determines the contribution of the independent variable xi

• e is the random error, which is assumed to be normally distributed with mean 0 and
standard deviation σ.

We will now discuss different choices for the independent variables, then when building a model
for a certain problem, we can choose out of those discussed.

1.1 First-Order-Model

The term first indicates that the independent variables are only included in the first power, we
later see how we can increase the order.

The First-Order Model in Numerical Variables

y = β0 + β1x1 + β2x2 + . . .+ βkxk + e

where x1, x2, . . . , xk are quantitative variables, which are not functions of each other.
β0 is the mean of y, when all independent variables equal 0.
βi is the slope of the line relating y with xi when all other independent variables are held fixed.

When choosing estimates for the parameters of the model, the criteria is the same as for the
simple linear regression model
Make

SSE =
∑

(yi − ŷi)2
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as small as possible by choosing b1, . . . , bk, where ŷ = b0 + b1x1 + b2x2 + . . .+ bkxk.
Finding the estimates involves solving k + 1 equations for k + 1 parameters. This is easy with
methods from linear algebra, but tedious without.
Here we will rely on the computer to find the estimates for us. The estimate for σ will be still
the square root of the MSE.

σ̂ = s =
√
MSE =

√
SSE

n− (k + 1)

The degrees of freedom for Error are df = n− (k + 1).

Example 1
(Adapted from http://simon.cs.vt.edu/SoSci/converted/MRegression/)
The ABC corporation decides to study the sales staff at their stores to determine if intelligence
and extroversion (i.e., a friendly and outgoing personality) predict sales performance of current
employees.
To conduct the study, all retail sales employees at existing stores take psychological tests
designed to measure intelligence and extroversion. Also, past sales performance data is checked
for each employee. In the end, there are three scores for each of 20 sales people:

1. an intelligence score (on a scale of 50-low intelligence to 150-high intelligence),

2. an extroversion score (on a scale of 15-low extroversion to 30-high extroversion), and

3. sales performance expressed as the average dollar amount sold per week.

We propose the following model:

y = β0 + β1x1 + β2x2 + e

y = sales, x1 = intelligence, x2 = extroversion, e = error (deviation from regression function),
with e ∼ N (0, σ).
In a first step the predictors should be plotted against each other and against the the response
variable to check if the model seems reasonable.
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The multiple linear regression model might be a reasonable description of the relationship:
The plots of intelligence with sales performance, and extroversion with sales performance both
show a weak positive linear relationship (maybe).
The scatter plot of the two predictors, intelligence and extroversion, does not show a linear
relationship, which is what we hope for.

If the predictor variables share a strong linear relationship, one of them becomes redundant.
For example variables one giving the temperature measured in Fahrenheit and the other tem-
perature measured in Celsius would provide identical information, and only one of them should
be included in the model. – Mathematically we create estimation problems when we include
two highly related variables.

In a next step we should do a model utility test (what does that mean here?) Will hold the
thought, and before look at the estimates for our parameters, we get from the data.

The R output for the analysis from this data is:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 993.925 788.099 1.261 0.2243

Intelligence 8.220 7.013 1.172 0.2573

Extroversion 49.709 19.634 2.532 0.0215

---

Residual standard error: 332.1 on 17 degrees of freedom

Multiple R-squared: 0.3526,Adjusted R-squared: 0.2765

F-statistic: 4.63 on 2 and 17 DF, p-value: 0.02482

Giving the estimated regression function

ŷ = 993.9 + 8.22(Intelligence) + 49.709(Extroversion)

Interpretation:
The mean sales for sales people with intelligence = 0 and extroversion = 0 is estimated to be
$ 993.9 per week (meaningful?).
For every extra point on the intelligence scale the sales per week increase on average by $ 8.22
per week when correcting for the influence of extroversion.
For every extra point on the extroversion scale the sales per week increase on average by $
49.71 per week when correcting for the influence of intelligence.

The estimate for σ equals
√

332.1 = 18.22, which means, that on average the observed sales
per week fall $ 18.22 away from the estimated values from the regression function.

But is this model an appropriate description of the relationship between sales per week and
intelligence and extroversion of the sales person? The scatter plots seem to say so but we better
test.

Example 2
Feeding snow goslings
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Botanists were interested in predicting the weight change of snow geese goslings as a function
of digestion efficiency, acid-detergent fibre (amount in the food) (all measured in percentage),
and diet (plants or duck chow (duck food)). The acid-detergent fibre is the least digestible
portion in plant food.
Our goal will be to fit the first order model to the data, where we want to explain the weight
change,

y = β0 + β1x1 + β2x2 + e

y = weight change, x1 = digestion efficiency, x2 = acid-detergent fibre, e=error.
In order to assure that a linear model is reasonable first obtain scattergrams for

1. the response variable with each explanatory variable, and

2. each pair of explanatory variables.

We hope to find that the response variable shows a linear relationship with the explanatory
variables. At least we do not want to see a non linear relationship.
When analyzing the scattergrams for the pairs of explanatory variables, we do not want to find
a strong linear relationship. Consider they would relate in a perfect linear relationship, then in
the Multiple Linear Regression Model they would bear the information on the response variable
and would be redundant.

The matrix plot shows that the relation ship between weight change and the other two variables
show a linear trend, the linear model seem to be appropriate for describing the relationship
between the variables.
But the scattergram for digestion efficiency and fibre displays a strong negative linear relation-
ship, we must fear that one of them will show to be redundant and we will have to check for
this effect.

The estimates of the coefficients and the confidence intervals for those produced by SPSS are:
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Coefficients
Unstandardized Standardized

Coefficients Coefficients 95% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound Upper Bound

(Constant) 12.180 4.402 2.767 .009 3.276 21.085
digeff -.027 .053 .115 .496 .623 -.135 .082

adfiber -.458 .128 -.826 -3.569 .001 -.717 -.198
a Dependent Variable: wtchng

From the table we get:

b0 = 12.18, b1 = −0.027, and b2 = −0.458

In the ANOVA table we find MSE = 12.387, which results in s =
√

12.387 = 3.5195.

Interpretation: β1 = −0.27% gives the mean change in the weight difference for a one percent
increase in the digestion efficiency when keeping the amount of fibre being fed to the gosling
constant. Based on the sample we estimate that the weight drops in average by 0.027 percent
if the digestion efficiency increases one percent and the acid detergent fibre remains the same.
Caution: We estimate a drop in weight change when increasing the digestion efficiency, this
is in contradiction to what we observe in the scattergram for weight change and digestion
efficiency. The reason for the discrepancy between the two is the high correlation between
digestion efficiency and the fibre variable, we already observed in the scattergram.
Try the interpretation of β2 is the value consistent with the scattergram?
β0 does not have a meaningful interpretation in this example, it would be the mean change in
weight if the digestion efficiency is at 0 percent and the acid-detergent fibre is at 0 %.

1.2 The Overall Model Utility and Inference about the Parameters

The multiple coefficient of determination, R2, is calculated by

R2 =
Explained variability in y

Total variability iny

Just as in the simple linear regression model the coefficient of determination measures how
much of the sample variability in y can be explained through the linear model applied.

Example 3
For the sales example the out put shows R2 = 0.3526, about 35% of the variation in the sales
per week can be explained of the differences in intelligence and extroversion.– Not that much!

For the gosling example the output shows an R2 = 0.529. About 53% of the variation in the
weight change can be explained through different values in acid-detergent fibre and digestion
efficiency.

R2 close to one indicates a very good fit of the model, and R2 close to zero indicates lack of fit.
One needs to be careful though, because if the sample size equals the number of parameters
R2 = 1, and a high number of parameters ensures a goof fit, even though the population might
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not be represented by the estimated model. In order to avoid this pitfall one should use a much
larger sample than parameters when fitting a linear regression model.

Instead of just interpreting R2, one can test for model utility.
If all slope parameters would be 0, then nothing about the response variable could be learned
from the predictor variables in the model. In a first step, we will try to disprove that all slopes
in the model are all zero and test H0 : β1 = β2 = . . . = βk versus Ha : at least one slope is not
0.
The test statistic is based on

F =
(SSyy − SSE)/k

SSE/(n− k − 1)

which is the ratio of the (standardized) explained variability to the (standardized) unexplained
variability.

A large ratio indicates that most of the variability could be explained, and a small value
indicates that barely any variability could be explained. To judge if the ratio is small or large
we have to take the degrees of freedom into account.

Model-Utility Test: F-Test for overall usefulness of the model

1. Hypotheses: H0 : β1 = β2 = . . . = βk = 0 versus Ha : at least one is not zero. Choose α.

2. Assumptions: The assumption of the multiple regression model hold up.

3. Test Statistic:

F0 =
(SSyy − SSE)/k

SSE/(n− k − 1)
with dfn = k, dfd = n− k − 1.

4. P-value = P (F > F0) (this is what we will focus on).

5. Reject H0 if P-value< α, other wise do not reject H0.

6. Put into context.

Continue Sales example:

1. Hypotheses: H0 : β1 = β2 = 0 versus Ha : at least one is not zero. Choose α = 0.05.

2. Assumptions: ...

3. Test Statistic from output:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 993.925 788.099 1.261 0.2243

Intelligence 8.220 7.013 1.172 0.2573

Extroversion 49.709 19.634 2.532 0.0215

---

Residual standard error: 332.1 on 17 degrees of freedom

Multiple R-squared: 0.3526,Adjusted R-squared: 0.2765

F-statistic: 4.63 on 2 and 17 DF, p-value: 0.02482
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F0 = 4.63, dfn = 2, dfd = 17.

4. P-value = P (F > F0)=0.02482

5. Reject H0 since P-value< α = 0.05

6. At significance level of 0.05 the data provide sufficient evidence that that the model is
useful in explaining the sales per week by considering intelligence and extroversion.

Continue Gosling example:

1. Hypotheses: H0 : β1 = β2 = 0 versus Ha : at least one is not zero. Choose α.

2. Assumptions: The assumption of the multiple regression model hold up, we checked that
by looking at the scattergram that the model seems to fit reasonably well.

3. Test Statistic from output:

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

Regression 542.035 2 271.017 21.880 .000(a)
Residual 483.084 39 12.387

Total 1025.119 41

a Predictors: (Constant), adfiber, digeff

b Dependent Variable: wtchng

F0 =
(SSyy − SSE)/k

SSE/(n− k − 1)
= 21.880

with dfn = 2, dfd = 42− 2− 1 = 39.

4. P-value = P (F > F0)=.000

5. Reject H0 since P-value< α = 0.05

6. At significance level of 0.05 the test confirms our conclusion based on the coefficient
of determination, we have sufficient evidence that the model is useful in explaining the
weight change of snow geese goslings.

Once we established that the model seems to describe the relationship between the response
and the independent variables properly, we start asking questions about the values of the
parameters, and which of them show a significant influence on the response variable.
We can answer this question in two ways, we can find confidence intervals for the parameters,
or conduct tests.

A C × 100% Confidence Interval for a slope parameter βi

β̂i ± t∗sbi
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The estimates β̂i and the standard error sβ̂i , should be obtained through SPSS, formulas are
too complex to be presented here.

Continue Sales example:
From R: 95% Confidence interval for β1 (slope for Intelligence): [-6.575296, 23.01512]
95% Confidence interval for β2 (slope for Extroversion): [8.285059, 91.13221]
Since 0 falls with in the 95% CI for β1, we conclude that β1 might be 0, and that intelligence
has no significant influence on sales peer week of a sales person.
Since the confidence interval for β2 does not include 0, we are 95% confident that β2 6= 0 and
β2 > 0, that is the more extroverted a sales person the higher the sales per week.

Continue Gosling example:
From SPSS: Confidence interval for β1: [-0.135, 0.082]
Confidence interval for β2: [-0.717, -0.198]
Since 0 falls with in the 95% CI for β1, we conclude that β1 might be 0, and the digestion
efficiency has no significant influence on the weight change.
Since the confidence interval for β2 does not include 0, we are 95% confident that β2 6= 0 and
β2 < 0, that is the less acid-detergent fibre in the food, the more the goslings gain weight.
Another way of answering this question is the test of an individual slope parameter βi.

1. Hypotheses: Parameter of interest βi.

test type hypotheses
upper tail H0 : βi ≤ 0 vs. Ha : βi > 0
lower tail H0 : βi ≥ 0 vs. Ha : βi < 0
two tail H0 : βi = 0 vs. Ha : βi 6= 0

Choose α.

2. Assumptions: Regression model is appropriate

3. Test statistic:

t0 =
β̂i
sβ̂i
, df = n− k − 1

4. P-value:

test type P-value
upper tail P (t > t0)
lower tail P (t < t0)
two tail 2P (t > abs(t0))

5. Decision: If P − value < α reject H0, otherwise do not reject H0.

6. Put into context

Continue example: Let us test

1. Hypotheses: Parameter of interest β2.

lower tail H0 : β2 ≥ 0 vs. Ha : β2 < 0

Choose α = 0.05.
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2. Assumptions: Regression model is appropriate, checked before.

3. Test statistic:
t0 = −3.569, df = 39

4. P-value:

The two tailed is 0.001, since we are doing a lower tailed test and the test statistic is
negative, the P-value=0.001/2=0.0005

5. Decision: Since P − value < α reject H0.

6. The test gives the same result as the confidence interval, we found significant evidence
that increasing the acid-detergent fibre in the food results in a drop in the weight change.

Be careful interpreting the result, when failing to reject H0 : βi = 0. This could be due to

1. there is no relationship between y and xi, or

2. there is a relationship, but it is not linear, or

3. a type II error occurred.

1.3 Residual Analysis – here for information only

Before we can apply the model for predicting and estimating we should check if the assumption
in the model are met.
We have to assume that the error, e, in the regression model is normally distributed with
mean 0 and standard deviation σ. In order to check these assumptions the residuals should be
obtained and

1. be displayed in a histogram and/or QQ-Plot, to asses if the assumption that they come
from a normal distribution is reasonable, and

2. residual plots for all predictor variables (scattergram of predictor and residuals) should
be obtained to illustrate that the standard deviation of the error does not depend on the
value of the predictors.

Continue Gosling example:

1. The histogram and QQ-plot for the residuals in our example:
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Both graphs do not indicate a strong deviation from normality. They are no cause for
concerns, about the assumptions in the model not being met.

2. In addition we need to check that the values of the predictor variables do not influence
the spread:

Both graphs display even scatter around zero, which is not changing for different values of
”digeff”, and ”adfibre”.
The Residual Analysis support that the assumptions of the model are met, and for that reason
our conclusion derived so far are valid.

Now that we established that the model is appropriate to describe the relationship between y
and the predictor variables and know which of the variables significantly influences the response
variable, we can use the model to predict future values of y and estimate E(y) for certain values
of the predictor variables.

1.4 Interaction Models

The First order model implies, that the response variable depends on 2 or more predictor
variables in a linear fashion. For simplicity assume only 2 predictors.
To investigate the relationship between x1 and y, assume we know x2 = x∗2 (for some fixed
value x∗2), then

µy = β0 + β1x1 + β2x
∗
2 = (β0 + β2x

∗
2) + β1x1

which is a line in x1 with slope β1 and intercept β0 + β2x
∗
2 (this part does not depend on x1).

In conclusion: When we check how µy depends on x1 we observe that for all possible values of
x2 the slope in the relationship between x1 and y is the same.
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The lines for different values of x2 are parallel (same slope, different intercepts)!
This means, when we consider a first order MLRM we inply that the relationship between each
independent variable and the response is not affected by the value of the other independent
variables. (In our example: the effect of intelligence on the sales is the same for all score on
extroversion – is this reasonable?)
In many cases this seem quite unreasonable and in order to use a model that better describes
the population one should include the possibility of interaction.
Two explanatory variables interact in their effect on the response, if the relationship between
one of the explanatory variables and the reponse depends on the value of the second explanatory
variable.
E.g. the relationship between height and weight is different for women and men, we say, Sex
and hight interact in their effect on weight.
We will now include an interaction term with the model that will permit to check if this
assumption is true. We will permit that the slopes of the lines relating x1 with y differ for
different values of x2, we call this interaction in the regression model.

A Multiple Linear Regression Model including interaction for two predictors

y = β0 + β1x1 + β2x2 + β3x1x2 + e
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where

• y is the dependent variable

• x1, x2 are the independent (predictor) variables

• µy = β0 + β1x1 + β2x2 + β3x1x2 is the deterministic part of the model

• β1 + β3x2 represents the change in y for a 1 unit increase in x1

• β2 + β3x1 represents the change in y for a 1 unit increase in x2

• e is the random error, which is assumed to be normally distributed with mean 0 and
standard deviation σ.

This means we find for each observation in our sample the product of their measurement for x1
and times it by the measurement for x2, this gives us a third predictor variable to be included
in the model. We then analyze the data in the same way we did for the first order model.

Continue example:
The model to predict the weight change of snow goslings through their digestion efficiency and
the amount of acid-detergent fibre they were fed, including an interaction term is:

y = β0 + β1x1 + β2x2 + β3x1x2 + e

y = weight change, x1 = digestion efficiency, and x2 = acid-detergent fibre
In a first step we find again the estimates for the model parameters (using SPSS)

Coefficients
Unstandardized Standardized

Coefficients Coefficients 95% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound Upper Bound

(Constant) 9.561 5.794 1.650 .107 -2.169 21.290
digeff .024 .090 .106 .270 .788 -.159 .207

adfiber -.357 .193 -.644 -1.845 .073 -.748 .035
eff-fiber -.002 .003 -.131 -.702 .487 -.009 .004

a Dependent Variable: wtchng

gives β̂0 = 9.561, β̂1 = 0.024, β̂2 = −0.357, and β̂3 = −0.002.
For finding an estimate for σ we need to look at the ANOVA table and find SSE, or MSE

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

Regression 548.216 3 182.739 14.561 .000(a)
Residual 476.903 38 12.550

Total 1025.119 41
a Predictors: (Constant), adfiber, digeff, eff-fibre

b Dependent Variable: wtchng
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We get MSE = 12.550, so s =
√

12.55 = 3.543.
Now check the utility, for this we will first report the coefficient of determination R2 = 0.535
and the adjusted coefficient of determination R2

a = 0.498, both indicate that about 50% of the
variation in the weight change can be explained through digestion efficiency and the amount of
fibre fed.
To assure the model is meaningful, we conduct a model utility test

1. Hypotheses: H0 : β1 = β2 = β3 = 0 versus Ha : at least one is not zero. Choose α.

2. Assumptions: The assumption of the multiple regression model hold up, we checked that
by looking at the scattergram that the model seems to fit reasonably well.

3. Test Statistic from the ANOVA table:

F0 =
(SSyy − SSE)/k

SSE/(n− k − 1)
= 14.561

with dfn = 3, dfd = 42− 3− 1 = 38.

4. P-value = P (F > F0)=.000

5. Reject H0 since P-value< α = 0.05

6. At significance level of 0.05 the test confirms our conclusion based on the coefficient
of determination, we have sufficient evidence that the model is useful in explaining the
weight change of snow geese goslings.

In order to decide, if interaction is present, and which variable (beyond the interaction) influ-
ences the weight change, we test if the slope parameters (coefficients) are significantly different
from 0.

1. Hypotheses: H0 : β1 = 0 vs. Ha : β1 6= 0, H0 : β2 = 0 vs. Ha : β2 6= 0, H0 : β3 = 0 vs.
Ha : β3 6= 0

Choose α = 0.05.

2. Assumptions: Regression model is appropriate, checked before.

3. Test statistic (from SPSS, see above):
For β1 : t0 = 0.270, df = 39
For β2 : t0 = −1.845, df = 39
For β3 : t0 = −0.702, df = 39

4. P-value:
For β1 : P − value = 0.788,
For β2 : P − value = 0.073
For β3 : P − value = 0.487

5. Decision: None of the P-values is smaller than 0.05 we can not reject any of the null
hypotheses.

6. The tests are non conclusive, we could not find interaction none of the two factors is
shown to have a significant influence on the weight change of the goslings.
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In our model building process, we should decide, not to include the interaction with the model
and go back to the first–order model only including the amount of fibre as a predictor, because
digestion efficiency neither showed a significant main effect nor interaction with the amount of
fibre on the weight change of gosling when correcting for the influence of the amount of fibre.
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