
1 Inferential Methods for Correlation and Regression

Analysis

In the beginning of the course Correlation and Regression Analysis was studied as a method
for describing the relationship between two numerical variables.
The sample Pearson Correlation Coefficient and the sample Regression Line were obtained for
describing and measuring the quality and strength of the linear relationship between the two
variables.

In this section first a model for the underlying population will be introduced. Based on the
model we will then obtain inferential methods for this kind of data.

1.1 The Simple Linear Regression Model

The simple linear regression model assumes that there is a line with intercept β0 and slope β1,
called the true population regression line, that describes the relationship between variables x
and y.
When a value of the independent variable x is fixed and an observation on the dependent
variable y can be written as,

y = β0 + β1x+ e

Basic Assumptions of the Simple Linear Regression Model with parameters β0, β1,
and σ

1. The distribution of the (random) error, e, has mean zero, µe = 0.

2. The standard deviation of e is the same for all values of x. It is denoted by σ.

3. The distribution of e is normal.

Randomness in e implies that the outcome of y for a given value of x is also random, so that y
is a random variable.

The assumptions of the model imply:

That for every specific value x, y is a normally distributed random variable with mean
β0 + β1x and standard deviation σ. (µy = β0 + β1x).

• The slope β1 of the population regression line is the average change in y associated with
a 1-unit increase in x.

• The intercept β0 is the mean of y when x = 0.

• The value of σ describes the extent to which (x, y) observations deviate vertically from
the regression line.
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1.2 Estimating the Population Regression Line

When the linear regression model is an appropriate description for the relationship between
two variables the parameters β0 and β1 are usually of interest but unknown to the investigator.
They can be estimated by using sample data (x1, y1), (x2, y2), . . . , (xn, yn).

Assume that the relationship of x and y can be described by a Simple Linear Regression Model
and that the observations were drawn independently.

Under these assumptions point estimates of β0 and β1 are the intercept and the slope of the
least squares line, respectively. That is

point estimator of β1 = b1 =
sxy
s2x

(see earlier chapter on regression)

point estimator of β0 = b0 = ȳ − b1x̄

The estimated regression line is identical to the least squares line seen in the chapter on regres-
sion early in the course.

ŷ = b0 + b1x

Is x∗ a specific value of x, then b0 + b1x
∗ can be interpreted as

1. a point estimate of the mean of y, when x = x∗, and

2. a point estimate of an individual observation for y, when x = x∗.

The third parameter of the model is the standard deviation σ of the error.
The estimate will be based on the Sum of Squares for Error:

SSE =
∑

(y − ŷ)2

where ŷ1 = b0 + b1x1, ŷ2 = b0 + b1x2, . . . , ŷn = b0 + b1xn are the fitted or predicted y values and
the residuals are

y1 − ŷ1, y2 − ŷ2, . . . , yn − ŷn
The residuals give the vertical distance of the observations to the regression line. This makes
SSE a measure of the extent to which the the sample data spreads out about the estimated
regression line.

Estimation of σ
The statistic for estimating the variance σ2 is

s2e =
SSE

n− 2

where
SSE =

∑
(y − ŷ)2 =

∑
y2 − b0

∑
y − b1

∑
xy

The estimate of the standard deviation σ is

se =
√
s2e
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σ measures the “average” vertical deviation of a point (x, y) in the population from the popu-
lation regression line.
Similarly, se measures the typical deviation of a sample point (x, y) of the sample regression
line.

Example: Is cardiovascular fitness related to an athlete’s performance in a 20km ski race?

x= time to exhaustion running on a treadmill (in minutes)
y= 20km ski time(in minutes)

x 7.7 8.4 8.7 9.0 9.6 9.6 10.0 10.2 10.4 11.0 11.7
y 71.0 71.4 65.0 68.7 64.4 69.4 63.0 64.6 66.9 62.6 61.7

A scatterplot of this data shows a linear decrease in ski–time by increasing treadmill time.

We use the Simple Linear Regression Model to relate the two variables

y = β0 + β1x+ e, e ∼ N (0, σ)

Straightforward calculation gives:
n = 11

∑
x = 106.3

∑
y = 728.70∑

x2 = 1040.95
∑
xy = 7009.91

∑
y2 = 48, 390.79

From these calculate

sxy =

(∑
xy − (

∑
x)(
∑
y)

n

)
/(n− 1) =

(
7009.91− (106.3)(728.70)

11

)
/10 = −3.19818

and

sx =

√√√√(∑x2 − (
∑
x)2

n

)
/(n− 1) =

√√√√(1040.95− (106.3)2

11

)
/10 =

√
1.3705 = 1.1707.
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syy =

√√√√(∑ y2 − (
∑
y)2

n

)
/(n− 1) =

√√√√(48, 390.79− (728.70)2

11

)
/10 =

√
11.7727 = 3.4311.

so that:
r =

sxy
sxsy

= −0.796

Indicating a strong negative linear relationship between the two variables.
The value of r = −0.79 can be viewed as the estimate of the population correlation coefficient,
ρ.

To estimate the regression line:

b1 =
sxy
s2x

=
−3.19818

1.17072
= −2.3335 and b0 = ȳ− b1 · x̄ = 66.2455− (−2.3335) · 9.6636 = 88.7956

The point estimate for the decrease in the mean ski–time for every minute increase in treadmill
time is 2.33 minutes.
The mean ski race time for some who can not do any time one treadmill is estimated to be 88.8
minutes. This is of course not meaningful, and using this result would mean to extrapolate our
findings to values of x we have not observed, which is not statically sound.

To estimate σ

SSE =
∑
y2 − b0

∑
y − b1

∑
xy = 43.097

s2e =
SSE

n− 2
= 4.789

se =
√
s2e = 2.188

For athletes with the same treadmill time the ski race time has an estimated standard deviation
of 2.19 minutes.

1.3 Residual Analysis

We will be using methods from inferential statistics to estimate β1 using a confidence interval
and to conduct tests concerning the slope. These methods are only appropriate, if the Simple
Linear Regression Model is an appropriate description of the population, otherwise the results
are misleading and might result in wrong conclusions.
Therefore it is necessary to at least have a look at the sample data to check if there are any
indications that the model is violated.

The model assumptions:

• The error is normally distributed

• The standard deviation of the error is the same for all values of the predictor variable.
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In order to check these assumptions using the sample data, we will use residuals, which are
observed values for the error.

Definition:
A residual is the difference between an observed value of the response variable and the value
predicted by the regression line.

residual = observed - predicted

ei = yi − ŷi

= yi − (b0 + b1 xi)

Example: The residuals for the example are

i xi yi ŷi ei
1 7.7 71.0 70.828 0.172
2 8.4 71.4 69.194 2.206
3 8.7 65.0 68.494 -3.494
4 9.0 68.7 67.794 0.906
5 9.6 64.4 66.394 -1.994
6 9.6 69.4 66.394 3.006
7 10.0 63.0 65.461 -2.461
8 10.2 64.6 64.994 -0.394
9 10.4 66.9 64.527 2.373
10 11.0 62.6 63.127 -0.527
11 11.7 61.7 61.494 0.206

The mean of the residuals is always zero.

• In order to check the first assumption we will do a histogram of the residuals.
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This histogram does not indicate a strong deviation from being bellshaped, it is symmetric
and does not show outliers. We would find that there is no strong evidence against the
assumption that the error is normal.

• To check if the the standard deviation is the same for all values of x we do a residual
plot.

A residual plot is a scatterplot of the residuals against the explanatory variable.

The residual plot should show an even band of data points scattered around zero. As it
does in this example.

Problems with the second assumption would be indicated if the residual plot either shows
a pattern in the residual (see below), or if for example the standard deviation in the
residuals changes with increasing x (see below)

1.4 Inference for the Slope of the Population Regression Line

The slope β1 is the average change in y, when x is increased by 1 unit. This interpretation makes
β1 an interesting parameter. In addition we find, that if β1 = 0 the Population Regression Line
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would be parallel to the x-axis, thus a change in x would not have an impact on y, which
implies that x and y are independent.

These two properties lead us to ask for a confidence interval for β1, in order to be able to
estimate it more properly and for a statistical test concerning β1.

Before we can obtain these methods we have to study the sampling distribution of the statistic
to be used for estimating β1, which is b1.

Properties of the Sampling Distribution of b1
When the basic assumptions of the simple linear regression model are met, the following claims
hold:

1. The population mean of b is β: µb1 = β1. Thus, b1 is an unbiased estimate of β1.

2. The population standard deviation of b1 is

σb1 =
σ

sx/
√
n− 1

3. The statistic b1 has a normal distribution (which is a consequence of e being normal
distributed).

If σb1 is large the estimate b1 does not have to be close to the true β1. In order for σb1 to be
small

• σ should be small, that means little variation about the population regression line, and
(or)

• sx should be large, that means far spread out x values are in favor for a smaller variation
in the estimate b1 for β1.

Standardizing b1
Since σb1 depends on the unknown σ it can not be used for a standardizing b1, in order to
develop a statistic that can be used for developing a confidence interval or test.
Instead use

sb1 =
se

sx/
√
n− 1

as estimate of σb1 the standard deviation of b1.
This leads to:

t =
b1 − β1
sb1

which is t–distributed with df = n− 2 (for a Simple Linear Regression Model). This t-statistic
does not depend on any unknown parameters beside β1, so it can be used for developing a
confidence interval and a test concerning β1.

Confidence Interval for β1

A (1−α)% Confidence Interval for the slope β1 from a Simple Linear Regression Model is given
by:

b1 ± (t∗)n−2 · sb1
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Where the t critical value is based on df = n− 2 and C (Table D).

Continue example: The calculation of a 95% confidence interval for β1 requires the t critical
value with n-2=9 degrees of freedom and C = 0.95: 2.262. The resulting confidence interval is
then

b1 ± t∗ · sb1 = −2.3335± (2.262) · (0.591)
= −2.3335± 1.336
= (−3.671;−0.999)

Based on the sample, we are 95% confident that the true average decrease in ski–time associated
with a one minute increase in treadmill time is between 1 and 3.7 minutes.
Hypothesis Test Concerning β1

•

Test type
Upper tail H0 : β ≤ 0

Ha : β > 0
Lower tail H0 : β ≥ 0

Ha : β < 0
Two tail H0 : β = 0

Ha : β 6= 0

Choose α.

• Assumptions: The Simple Linear Regression Model applies to x and y.

• Test statistic:

t0 =
b1 − 0

sb1
with df = n− 2

• P-value:

Test type P-value
Upper tail P (t > t0)
Lower tail P (t < t0)
Two tail 2 · P (t > abs(t0))

• Decision:

• Context:

The two tail test of H0 : β1 = 0 versus Ha : β1 6= 0 is a test to assure that there is in fact a
linear relationship between x and y, it is also called “Model Utility Test”.

Continue Example:
Let’s do the Model Utility Test for the example above at a significance level of α = 0.05.

1. Hypotheses:
H0 : β1 = 0 versus Ha : β1 6= 0

and α = 0.05. Do Model Utility Test.
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2. Assumptions: Assume the relationship of x and y can be described by a Simple Linear
Regression Model:

3. Test statistic:

t0 =
b1 − 0

sb1
=
−2.3335

0.591
= −3.948 with df = 9

4. P-value: This is a two tail test, thus
p-value= 2 · P (t > abs(t0)) = 2 · P (t > 3.948)
according to Table D, 0.001 < P (t > 3.948) < 0.0025,
therefore (multiplying the equation by 2) 0.002 < 2P (t > 3.948) < 0.005,
giving 0.002 < p-value < 0.005.

5. Decision: Since the p-value≤ α the null hypothesis is rejected.

6. Conclusion: We conclude that at significance level of 5% β1 6= 0 and ski–time and
treadmill time are not independent.

Summary:
When analyzing the relationship between two numerical variables follow the following steps:

1. Obtain scatterplot to confirm a linear relationship, only follow the next steps, if there is
a linear relationship.

2. Calculate r, the correlation coefficient to measure the strength of the linear relationship.

3. Conduct a Model Utility Test (and Residual Analysis) to confirm that the data provide
sufficient evidence that the linear regression model is an appropriate description of the
relationship.

4. Estimate the parameters of the model, β1, β0, and σ, and interpret.

5. (Optional) Apply the model to estimate specific values (see STAT 252).
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