1. Using the fast food study data we will explore which variables affect the starting wage after the introduction of the law regulating minimal wage.

Variables used are: Wage_st2 - wage after introduction of the new law Wage_st - wage before the introduction of the law Pfry2 - Price of medium fries Psoda2 - Price of medium sized soda HRSOPEN2 - Opening hours per day (after introduction of the law)

The following tables show output from a linear regression analysis.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.300 ^a	.090	.078	.2461

a. Predictors: (Constant), PFRY2, WAGE_ST, HRSOPEN2, PSODA2

ANOVAª

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.906	4	.477	7.867	.000 ^b
	Residual	19.322	319	.061		
	Total	21.229	323			

a. Dependent Variable: WAGE_ST2

b. Predictors: (Constant), PFRY2, WAGE_ST, HRSOPEN2, PSODA2

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.004	.273		14.677	.000
	WAGE_ST	.075	.048	.083	1.554	.121
	HRSOPEN2	012	.005	130	-2.328	.021
	PSODA2	.460	.184	.169	2.499	.013
	PFRY2	.359	.160	.155	2.239	.026

a. Dependent Variable: WAGE_ST2

(a) State the Multiple Linear Regression Model implied by the output.

(b) Assess the usefulness of the model by interpreting R^2 and the adjusted R^2

(c) Asses the usefullness of the model by conducting a model utility test.

(d) State the estimated regression function.

- (e) Do the data provide sufficient evidence that the opening hours have an effect on the starting wage when correcting for the other variables in the model.
- (f) Provide a 95% confidence interval for the slope of the price of fries. Interpret.
- (g) The slope for opening hours is negative, interpret.
- (h) Would this be a good model to predict the starting wage for an employee at a fast food outlet at the time the data was collected? Explain.
- (i) What is measured by the standard deviation of the model, and what would be an estimate for it based on the output.
- (j) Explain what it would mean if in a similar model opening hours and chain (McDonalds, Burger King, KFC, etc.) would interact in their effect on the starting wage. You might want to sketch a graph to help your explanation.