MacEwan University STAT 161

Formula Sheet – Final Exam

Descriptive Statistics

• Sample Variance: $s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1} = \left(\sum x_i^2 - \frac{(\sum x_i)^2}{n}\right)/(n-1)$

• Sample Standard Deviation: $s = \sqrt{\text{Sample Variance}} = \sqrt{s^2}$

- Median: Order the data from smallest to largest. The median M is either the unique middle value or the mean of the two middle values.
- Lower Quartile: Order the data from smallest to largest. The lower quartile Q_1 is the median of the smaller half of the values.
- Upper Quartile: Order the data from smallest to largest. The upper quartile Q_3 is the median of the upper half of the values.
- Interquartile Range (IQR) = Upper Quartile Lower Quartile = $Q_3 Q_1$
- Outliers: lower fence $=Q_1 1.5$ IQR and upper fence $=Q_3 + 1.5$ IQR

Probability Theory

- Addition Rule: P(A or B) = P(A) + P(B) P(A&B)
- Complement Rule: P(A does not occur) = P(not A) = 1 P(A)
- General Multiplication Rule: P(A & B) = P(A & B) = P(A|B)P(B)
- Multiplication Rule for **Independent** Events: If A and B are **independent**, then P(A and B) = P(A&B) = P(A)P(B)
- Conditional Probability of A given B, if P(B) > 0: $P(A|B) = \frac{P(A\&B)}{P(B)}$

Normal Distribution

- Z-score: $Z = (X \mu)/\sigma$
- p-th percentile of a normal distribution with mean μ and standard deviation σ : $x_p = \mu + \sigma z_p$

Sampling Distribution

• Sampling Distribution of a Sample Mean, \bar{X} : $\mu_{\bar{X}} = \mu$, $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$

Estimation

Parameter	Estimator	Standard Error	Confidence Interval
μ	\bar{x}	$\frac{\sigma}{\sqrt{n}}$	$\bar{x} \pm t^* \frac{s}{\sqrt{n}}$
$\mu_1 - \mu_2$	$\bar{x}_1 - \bar{x}_2$	$\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}$	$(\bar{x}_1 - \bar{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
$\mu_1 - \mu_2$	\bar{x}_d	$\frac{\sigma_d}{\sqrt{n}}$	$\bar{x_d} \pm t^* \frac{s_d}{\sqrt{n}}$

Choosing the Sample Size

• Estimate a mean μ using a C% confidence interval within an amount of m.

$$n \geq \left(\frac{z^*\sigma}{m}\right)^2$$

Test Statistics

• Test Statistic for 1-sample *t*-Test concerning μ

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \qquad \qquad df = n - 1$$

• Test Statistic for two–sample *t*-Test for comparing two population means:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}, \quad df = \min(n_1 - 1, n_2 - 1)$$

• Test Statistic for paired t-Test for comparing two population means:

$$t = \frac{\bar{x}_d}{(s_d/\sqrt{n})} \qquad df = n - 1$$

Simple Linear Regression Analysis

- Covariance: $s_{xy} = \frac{\sum x_i y_i \frac{(\sum x_i)(\sum y_i)}{n}}{n-1}$
- Pearson's Correlation Coefficient: $r = \frac{s_{xy}}{s_x s_y}$
- Least Squares Regression Line $\hat{y} = b_0 + b_1 x$, with

$$b_1 = r\left(\frac{s_y}{s_x}\right) = \frac{s_{xy}}{s_x^2}$$
, and $b_0 = \bar{y} - b_1 \bar{x}$

- Coefficient of Determination : r^2
- Estimation of σ

$$\hat{\sigma} = s_e = \sqrt{\frac{SSE}{n-2}}$$
, with $SSE = \sum (\hat{y}_i - y_i)^2 = SS_{yy} - b_1 SS_{xy}$

• Confidence interval for β_1

$$b_1 \pm t^* \frac{s_e}{\sqrt{(n-1)s_x^2}} = b_1 \pm t^* S E_{b_1}$$

• test statistic for a test about β_1

$$t_0 = \frac{b_1}{s_e/\sqrt{(n-1)s_x^2}} = \frac{b_1}{SE_{b_1}}, \quad df = n-2$$

Multiple Linear Regression Analysis

• Model Utility

- Adjusted
$$R^2$$
: $R^2_{adj} = 1 - \frac{(1-R^2)(n-1)}{n-k-1}$
- Test Statistic: F with $df_n = k$ and $df = n-k-1$

- Inference for an individual slope
 - Confidence interval for β_i : $b_i \pm t^* SE_{b_1}$, df = n k 1
 - Test statistic for a test about β_i : $t_0 = b_i/SE_{b_i}$, df = n k 1