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1 Simple Linear Regression

The linear regression model is applied if we want to model a numeric response variable and its
dependency on at least one numeric predictor variable.

The Simple Linear Regression Model

y = β0 + β1x+ e, e ∼ N (0, σ)

where

y = dependent or response variable

x = independent or predictor variable

e= random error, assumed to be normally distributed with mean 0 and standard deviation
σ

β0 = intercept

β1 = slope

A consequence of this model is that for a given value of x the mean of the response variable y
follows a line in the predictor variable, x.

µy = E(y) = β0 + β1x

β0 + β1x describes a line with y-intercept β0 and slope β1

In conclusion the model implies that y on average follows a line, depending on x.
Since y is assumed to also underlie a random influence, not all data is expected to fall on the
line, but that the line will represent the mean of y for given values of x.
The randomness in y is captured through the error, e, which describes that measurements will
be scattered around the line. To be more precise, once we fix a value of x = x0, then y is on
average equal to β0 + β1x0 and has a standard deviation of σ (the standard deviation of the
error, e).
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We will see how to use sample data to estimate the parameters of the model, how to check the
usefulness of the model, and how to use the model for prediction, estimation and interpretation.

1.1 Fitting the Model

In a first step obtain a scattergram, to check visually if a linear relationship seems to be
reasonable.

Example 1
Does the number of years invested in schooling pay off in the job market?
Apparently so – the better educated you are, the more money you will earn. The data in
the following table give the median annual income of full-time workers, age 25 or older by the
number of years of schooling completed - this is old data, newer data can be found in the
example at the end of these notes.

x=Years of Schooling y=Median Income (in 1000 dollars)
8 18
10 20.5
12 25
14 28.1
16 34.5
19 39.7

Start of with creating a scatterplot for x and y.
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The scatterplot shows a strong, positive, linear association between years of schooling and
the median salary. Indicating that a SLR model should be appropriate for describing the
relationship between the two variables.

Questions to be addressed based on the scatterplot:

1. Can the relationship between x and y be described by a straight line?
If yes, what is the nature of the relationship? (positive or negative)

2. Is there a non-linear relationship between x and y?

3. How strong is the association? (weak, moderate, strong)

If the relationship between two variables is linear and has no random component, the dots in
the scatterplot would all fall precisely on a line and the deviations from the line would all be 0.
But if there is a random component, the data in the scatterplot will exhibit a linear pattern that
generally follows a strait line, with some of the measurements being close and others further
away from the line.
When interpreting the line as the prediction of y given values of x, we define

deviations = difference between observed measurements and the line = error of prediction
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The line that results in the least squared deviations (for the sample data) will be used as
estimation for the line β0 + β1x in the model (population).

Continue example:
We propose a SLR model for the association between income (y) and years of schooling (x):

y = β0 + β1x+ e, e ∼ N (0, σ)

After we established through the scatterplot that a linear model seems to be appropriate for de-
scribing the association between x and y, in a next step the estimates for the model parameters
are calculated using the given sample data, by making the total squared deviations between
line and measurements as small as possible. The result will be the estimated regression line

ŷ = β̂0 + β̂1x

The hats indicate that these are estimators for the true population parameters, based on sample
data.

For given β̂0 and β̂1, the deviation of the ith value from its predicted value is yi − ŷi =
yi − (β̂0 + β̂1xi).
Then the sum of squared deviations for all n data points is

SSE =
∑

[yi − (β̂0 + β̂1xi)]
2

β̂0 and β̂1, so that the SSE is as small as possible, and call the result the “least squares
estimators” of the population parameters β0 and β1.

Solving this problem mathematically provides:
With

SSxy =
∑

xiyi −
(
∑
xi)(

∑
yi)

n
and SSxx =

∑
x2i −

(
∑
xi)

2

n

• the estimator for the slope is β̂1 =
SSxy
SSxx

and

• the estimator for the intercept is β̂0 = ȳ − β̂1x̄.

Continue example:
To apply the formulas first get the required totals from the data:

xi yi x2i y2i xiyi
8 18 64 324 144
10 20.5 100 420.25 205
12 25 144 625 300
14 28.1 196 789.61 393.4
16 34.5 256 1190.25 552
19 39.7 361 1576.09 754.3

totals 79 165.8 1121 4925.2 2348.7∑
xi

∑
yi

∑
x2i

∑
y2i

∑
xiyi
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Using these totals calculate:

SSxy = 2348.7− (79)(165.8)

6
= 165.667

SSxx = 1121− (79)2

6
= 80.833

β̂1 =
165.667

80.833
= 2.049

β̂0 =
165.8

6
− 2.049

79

6
= 0.648

So,
ŷ = 0.648 + 2.049x

describes the line that results in the least total squared deviations (SSE) possible, and is called
the Least Square Regression Line/Equation.

The intercept (β̂0) estimates that the mean income is $648 for a person with zero years of
education.
Using this interpretation would mean that we apply the result outside the range of observed
values of x. This is called extrapolation, which is highly problematic and usually not admissible.

The slope (β̂1) estimates that in average the income increases by $2049 for every extra year of
schooling.

1.2 Understanding the Model

• The first implication of the model is that the mean of y follows a straight line in x, not
a curve

Write µy = E(y) = β0 + β1x

• The model implies that the deviations from the line are normally distributed (the error
is normally distributed)

• The variation from the line is assumed to be the same across the range of x (σ, the
standard deviation of the error is the same for all values of x). This is called the ho-
moscedasticity assumption

The data in the figure on the left do not indicate a violation of the homoscedasticity
assumption, the scatter is the about the same across the values of x, but in the figure on
the right the scatter increases as x increases indicating a violation of the homoscedasticity
assumption.
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• The measurements in the sample are independent

This discussion shows that another important parameter in the model (beside β0 and β1) is the
standard deviation of the error, σ.

Estimating σ
A large standard deviation indicates that the deviations, i.e. the difference between the line and
the measured values, are large on average. Therefore it makes sense that SSE =

∑
(ŷi− yi)2 is

used in the estimator for σ.
In fact the best estimator for σ2 is

σ̂2 = s2 =
SSE

n− 2

where
SSE =

∑
(ŷi − yi)2 = SSyy − β̂1SSxy

and

SSyy =
∑

y2i −
(
∑
yi)

2

n
and the best estimator for σ is

s =
√
s2 =

√
SSE

n− 2

It is called the estimated standard error of the regression model.

Continue example:
Find the estimate for the standard deviation σ from the model, which explains how far the
data points fall from the line.

SSyy = 4925.2− (165.8)2

6
= 343.593

SSE = 343.593− 2.049(165.667) = 4.142

then

s =

√
4.142

6− 2
= 1.02

is the estimated standard deviation in the regression model.
Interpretation of s:
One should expect about 95% of the observed y values to fall within 2s of the estimated line.

We expect that 95% of the median incomes fall within 2s = $2.04 from the true population
regression line.

1.3 Measuring Model Fit

Correlation Coefficient

The correlation coefficient

r =
SSxy√
SSxxSSyy

measures the strength of the linear relationship between two variables x and y.

Properties
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1. −1 ≤ r ≤ 1

2. independent from units used

3. abs(r) = 1 indicates that all values fall precisely on a line

4. r > (<)0 indicates a positive (negative) relationship.

5. r ≈ 0 indicates no linear relationship

r ≈ 0.8 r ≈ −0.5 r ≈ 0

r ≈ 1 r ≈ −0.9 r ≈ 0(nonlinear)
Continue example:

r =
165.667√

80.833(343.593)
= 0.994

indicates a very strong positive linear relationship between the years of schooling and the mean
income.

Coefficient of Determination
The coefficient of determination measures the usefulness of the model, it is the correlation
coefficient squared, r2, and a number between 0 and 1. It’s wide use can be explained through
it’s interpretation.
An alternative formula for r2 is

r2 =
SSyy − SSE

SSyy

This formula can help to understand the interpretation of r2.
SSyy measures the spread in the y values (in the sample), and SSE measures the spread in y
we can not explain through the linear relationship with x. So that SSyy − SSE is the spread
in y explained through the linear relationship with x. By dividing this by SSyy, we find that r2

gives the proportion in the spread of y, that is explained through the linear relationship with
x.
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Continue Example:
The coefficient of determination in our example is

r2 = 0.9942 = 0.988

98.8% in the variation of the mean income is explained through years of schooling.
A high coefficient of determination indicates that the model is suitable for estimation and
prediction.

1.4 Checking Model Utility – Making Inference about the slope

As the sample mean x̄ is an estimate for the population mean µ, the sample slope β̂1 is an
estimate for the population slope β1.
Our next goal is to find a confidence interval for β1, and to learn how to conduct a test
concerning the true population slope, β1.

In order to this we have to discuss the distribution of β̂1.

If the assumptions of the regression model hold, then β̂1 is normally distributed with mean
µβ̂1 = β1 and standard deviation

σβ̂1 =
σ√
SSxx

σβ̂1 is estimated by

sβ̂1 =
s√
SSxx

which is the estimated standard error of the least squares slope β̂1.

Combining all this information we find that under the assumption of the regression model

t =
β̂1 − β1
s/
√
SSxx

is t-distributed with df = n− 2.

(1− α)× 100% CI for β1

β̂1 ± t∗
s√
SSxx

where t∗ = (1− α/2) percentile of the t-distribution with df = n− 2.

Continue example:
A 95% CI for β1 (df=4)

2.049± (2.776)
1.02√
80.833

→ 2.049± 0.312

A 95% CI for β1 is [1.737 ; 2.361 ]. We are 95% confident that the mean income increases
between $1738 and $2360 for every extra year of schooling.

Does the CI provide sufficient evidence that β1 6= 0?
Since zero is not included with the confidence interval, we are 95% confident that the slope is
not zero,i.e. β1 6= 0.
This is an important question, because, if β1 would be 0, then the variable x would contribute
no information on y using a linear model.

Another way of answering this question is the Model Utility Test about β1
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1. Hypotheses: Parameter of interest β1.

test type hypotheses

upper tail H0 : β1 ≤ 0 vs. Ha : β1 > 0

lower tail H0 : β1 ≥ 0 vs. Ha : β1 < 0

two tail H0 : β1 = 0 vs. Ha : β1 6= 0

Choose α.

2. Assumptions: Regression model is a proper description of the population.

3. Test statistic:

t0 =
β̂1

s/
√
SSxx

, df = n− 2

4. P-value/Rejection Region:

test type P-value Rejection Region

upper tail P (t > t0) t0 > tα

lower tail P (t < t0) t0 < tα

two tail 2P (t > abs(t0)) abs(t0) > tα/2

5. Decision: If P − value < α reject H0, otherwise do not reject H0.

6. Put into context

Continue example:
Test if the data provide sufficient evidence that the mean income increases with increasing years
of schooling.
Test if β1 > 0

1. Hypotheses: Parameter of interest β1.

H0 : β1 ≤ 0 vs. Ha : β1 > 0 Choose α = 0.05.

2. Assumptions: Regression model is a proper description of the population.

3. Test statistic:

t0 =
2.049

1.02/
√

80.833
= 18.240, df = 4

4. P-value: upper tail P (t > t0) < 0.0001

5. Decision: P − value < 0.0001 < 0.05 = α reject H0

6. At significance level of 5% we conclude that the mean income increases if the number
of years of schooling increases. The linear regression model helps explaining the mean
income.
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1.5 Applying the Model – Estimation and Prediction

Once we established that the model we found describes the relationship properly, we can use
the model for

• estimation: estimate mean values of y, E(y) for given values of x. For example we might
be interested in the mean income of people who have 15 years of schooling.

• prediction: new individual value based on the knowledge of x, For example, we want to
give the range of income most people with 15 years of schooling fall within.

Which application will we be able to answer with higher accuracy?
The key to both applications of the model is the least squares line, ŷ = β̂0 + β̂1x, we found
before, which gives us point estimators for both situations..
The next step is to find confidence intervals for E(y) for a given x, and for an individual value
y, for a given x.
In order to do this we will have to discuss the distribution of ŷ for the two applications.

Sampling distribution of ŷ = β̂0 + β̂1x

1. The standard deviation of the distribution of the estimator ŷ of the mean value E(y) at
a specific value of x, say xp

σŷ = σ

√
1

n
+

(xp − x̄)2

Sxx

This is the standard error of ŷ.

2. The standard deviation of the distribution of the prediction error, y− ŷ, for the predictor
ŷ of an individual new y at a specific value of x, say xp

σ(y−ŷ) = σ

√
1 +

1

n
+

(xp − x̄)2

SSxx

This is the standard error of prediction.

A (1− α)100% CI for E(y) at x = xp

ŷ ± t∗ s
√

1

n
+

(xp − x̄)2

SSxx

A (1− α)100% Prediction Interval for y at x = xp

ŷ ± t∗ s
√

1 +
1

n
+

(xp − x̄)2

SSxx

Comment: Do a confidence interval, if interested in the mean of y for a certain value of x, but
if you want to get a range where a future value of y might fall for a certain value of x, then do
a prediction interval.

Continue example:
According to the linear regression model predict the income after x = 15 years of schooling?
Find a prediction interval.
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For xp = 15 find ŷ = 0.648 + 2.049(15) = 31.383. With df = 4 t∗ = 2.776

31.383± 2.776(1.01)

√
1 +

1

6
+

(15− 79/6)2

80.833
, gives 31.383± 3.082

which is [28.301, 34.465]. For a person with with 15 years of schooling with 95% confidence the
income falls between $28301 and $34465.
Estimate the mean income for people with 15 years of schooling at confidence level of 95%.

31.183± 2.776(1.01)

√
1

6
+

(15− 79/6)2

80.833
, gives 31.183± 1.279

which is [29.858, 32.417]. With 95% confidence the mean income for people with 15 years of
schooling falls between $29858 and $32417.
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