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Inferential Statistic

We will be starting now to cover inferential statistics. Its objective is to use sample data to
obtain results about the whole population.

In a first step the goal is to describe an underlying population. Since the populations are de-
scribed in form of models, that are characterized by parameters (mean µ and standard deviation
σ or probability p for the event of interest) our goal will be to estimate those characteristics or
target parameters.
There are two different approaches for estimating: Point Estimation and Interval Estimation.

� For Point Estimation you give one value for a characteristic, which is hopefully close
to the true unknown value. We can not expect to find the precise value describing the
population when only using data of a sample.

� For Interval Estimation you give an interval of likely values, where the width of the
interval will depend on the confidence you require to have in this interval.

See how to use statistics (values based on sample data) to obtain reasonable values for the
population characteristics.
Since we base our statements just on a sample we see later how to give a measure of accuracy
or confidence for the estimate.

1 Estimation of a population mean µ

1.1 Point Estimator for µ

Definition:
A point estimate of a possible characteristic is a single number that is based on sample data
and represents a plausible value of the characteristic.

Example:

� The sample mean x̄ is a point estimate for the population mean µ.

� The sample standard deviation s is a point estimate for the population standard deviation
σ.

� The sample proportion p̂ is a point estimate of p the population probability for Success.

Example:

� To estimate the average height µ of students in this class, we take a sample of size 10
and calculate a sample mean of x̄ =172.9cm. We estimate the mean height in this class
is 172.9cm!

� The sample standard deviation s in the sample of 10 students from this class is s =9.3cm.
We estimate that the population standard deviation σ of the height in this class is 9.3cm.
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� To estimate the probability p to survive a specific cancer treatment we look at a sample
of size 250. 200 of the patients survived the first five years. The sample proportion
p̂ = 200/250 = 0.8 is the estimate for p.

A point estimate gives a single value that is supposed to be close to the true value of the
characteristic but it doesn’t tell how close the estimate is.
One desirable property of an estimator is that the mean of it’s distribution equals the parameter
it is supposed to estimate.

Definition:
An estimator is said to be unbiased estimator for a parameter if the mean of its distribution is
equal to the true value of the parameter. Otherwise is said to be biased.

The sample mean x̄ of n observation is an unbiased estimator for the population mean µ, since
we saw that µx̄ = µ.

But every single observation is also an unbiased estimate!
Intuition tells us that the sample mean is the better estimator, but why?

Remark:
Given a choice between several unbiased statistics for a given population characteristic, the
best statistic to choose is the one with the smallest standard deviation of its distribution.

Since the standard deviation of the the mean σx̄ = σ/
√
n and the standard deviation of a

single observation is σ, this remark leads us to choose the sample mean as the better estimator
(unbiased statistic). The intuition was right!

Remark:
The sample standard variance

s2 =

∑n
n=1(xi − x̄)2

n− 1

is an unbiased estimator for estimating the population variance σ2. In fact, the denominator
has to be n − 1 in order for this statistic to be unbiased. (This statement doesn’t imply that
s =
√
s2 is an unbiased estimator for σ, in fact it usually under estimates the true value of σ.)

Definition:
The distance between an estimate and the true parameter is called the error of estimation.

Definition:
The standard error of a statistic is the standard deviation of the statistic.

Remark: For unbiased estimators, the error of estimation will be most likely (with probability
0.95 for normal distributions) less than 1.96 standard errors (SE)–(Compare Empirical Rule).
But on the other hand we find that for large populations P(x̄ = µ) = 0, a frustrating result,
because we are 100% certain that the value we give is wrong. We only know that x̄ should be
close to µ, but again do not know how close.
To deal with this dilemma we give an interval for estimating µ instead of just one value.
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Summary:
Estimation of a population mean µ
To estimate the population mean µ, the point estimator x̄ is unbiased, with the standard error
estimated as

SE =
s√
n

These claims hold as long as the sample size is large, so that the Central Limit Theorem can
be applied, that is n ≥ 30

1.2 Confidence Intervals

As an alternative to point estimation we can report not just a single value for the population
characteristic, but an entire interval of reasonable values based on sample data. A measure of
confidence will be connected to such an interval.
For example we could give

x̄± 2
σ√
n

to estimate µ.
Then the chances that we capture µ with this interval is about 95% (it actually 0.9544)
If we do not use 3, but 3 as a factor in the interval this chance will increase, or if make the
facto smaller the probability to capture µ will also decrease.
In general:

Definition: A (1 − α)–confidence interval for a population characteristic is an interval of
values for the characteristic. It is constructed so that, the probability for the true value of the
characteristic to be captured in the interval equals the confidence level (1− α).

Remark:

� The confidence level provides information on how much confidence we can have in the
method used to construct the interval estimate.

If we would use the method for different samples, 1 − α gives the probability, that the
true value falls into the calculated intervals.

� You also can give the confidence level in percent.

� Usual choices for the confidence level are 90%, 95%, or 99%.

� Most confidence intervals are of the form

(point estimator) ± margin of error

� Commonly used critical values

Confidence
Coefficient

(1− α) α α/2 zα/2
0.90 0.1 0.05 1.645
0.95 0.05 0.025 1.96
0.99 0.01 0.005 2.58
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1.2.1 Large-Sample z -Confidence Interval for a Population Mean µ

If we use the statistic x̄ for estimating the population mean µ, we can use the following infor-
mation from the Central Limit Theorem in order to obtain a confidence interval for µ.

� µx̄ = µ

� σx̄ = σ/
√
n standard error of x̄.

� If n ≥ 30, we can assume that the sampling distribution of x̄ is approximately normal.

This leads to the following confidence interval for the population mean µ.

The One-Sample z Confidence Interval for µ
If n ≥ 30 and the standard deviation σ is known an (1−α) confidence interval for the population
mean µ is given by

x̄± zα/2
(
σ√
n

)

With zα/2 being the (1− α/2) percentile of the standard normal distribution (Table IV).

Usually σ is unknown. In the case, that σ is unknown, it can be approximated by the sample
standard deviation s when the sample size is large (n ≥ 30) and the approximate confidence
interval is

x̄± zα/2
(
s√
n

)

Proof:
Start with

z =
x̄− µ√
nσ

which as a result from the Central Limit Theorem is standard normal distributed.
With zα/2 being the (1− α/2) percentile of the standard normal distribution, we get

P (−zα/2 <
x̄− µ
σ/
√
n
< zα/2) = 1− α

or equivalent

P (−zα/2
σ√
n
< x̄− µ < zα/2

σ√
n

) = 1− α

or equivalent

P (x̄− zα/2
σ√
n
< µ < x̄+ zα/2

σ√
n

) = 1− α

That is, when we randomly choose a sample and use above formula to find the interval, then
the probability that µ falls within the interval equals 1− α.

Example:
A scientist interested in monitoring chemical contaminants in food, and thereby the accumu-
lation of contaminants in human diets, selected a random sample of n = 50 male adults. It
was found that the average daily intake of dairy products was x̄ = 756grams with a standard
deviation of s = 35grams.
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An approximate 95% confidence interval for the mean daily intake of dairy products for men
is then:

x̄± zα/2
(
s√
n

)

756± 1.96

(
35√
50

)

756± 9.70

Hence, the 95% confidence interval for µ is from 746.30 to 765.70 grams per day.
The true mean daily intake of diary products for men is with confidence 0.95 in the interval
from 746.30 to 765.70 grams per day.

Remember:
Being ”95% confident” means, if you were to construct 100 95% confidence intervals from 100
different random samples. Of the 100 intervals you expect 95 to capture the true mean, and 5
not to capture the mean.
In conclusion, you can not be sure that a specific confidence interval captures the true mean µ.

1.2.2 Choosing the Sample Size

One of the important decisions, before drawing a sample, is how many experimental units from
the population should be sampled. That is: what is the appropriate sample size?
The answer depends on the specific object of investigation and the precision or accuracy one
wants to insure. A measure for the accuracy in estimation is the margin of error.

Argument: Suppose you want to estimate the average daily yield µ of a chemical process and
you want to insure with a high level of confidence that the estimate is not more than 4 tons of
the true mean yield µ.

In this situation you would require that the sampling error of x̄ in a (1 − α)100% confidence
interval is less than 4 tons.

This will ensure, that if you would take 100 samples the distance between the true mean and
the sample mean from about (1− α)100 samples will be at most 4 tons.

In general the researcher chooses the largest value SE that is acceptable for the error indicated
by a confidence interval.

Then the researcher determines what confidence level (1− α) he wants to attain in his claims
in the study.

From this the necessary sample size can be determined. We require that the margin of error in
a (1− α) confidence interval is less or equal than SE.

zα/2
σ√
n
≤ SE ⇔

(
zα/2σ

SE

)2

≤ n

Go back to the example. Plan to do a 95% confidence interval for µ, where we allow a margin
of error not greater than SE = 4.
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At this point we still do not know σ, the standard deviation of the daily yield of this chemical
process.

If σ is unknown, what is the realistic case, you can use the best approximation available:

� An estimate s obtained from a previous sample.

� A range estimate based on knowledge of the largest and smallest possible measurement:
σ ≈ Range/4.

In this example assume a previous sample would have shown a sample standard deviation of
s = 21tons. Then

n ≥
(zα

2
σ

SE

)2

=
(

1.9621

4

)2

= 105.8

We obtain that the sample size has to be at least 106 in order to estimate µ with a 95%
confidence interval, with a margin of error smaller than 4.

Find that this result is only approximate since we had to use an approximation for σ, but this
is still better than just choosing any number.

Example:
The financial aid office wishes to estimate the mean cost of textbooks per quarter for students
at a particular college. For the estimate to be useful, it should be used be within $20 of the
true population mean. How large a sample should be used to be 95% confident of achieving
this level of accuracy?
The financial aid knows that the amount spent varies between $50 and $450.
A reasonable estimate of σ is then

range

4
=

450− 50

4
= 100

The required sample size is

n ≥
(

1.96σ

SE

)2

=
(

1.96 · 100

20

)2

= 9.82 = 96.04

So that in this case a sample size of at least 97 is required.

1.2.3 t-confidence interval for a mean µ

The problem with the large sample confidence interval for µ is that it requires us to know σ
the population standard deviation. This assumption is strong and never met.
For that reason we should replace the large sample confidence interval with an alternative, that
does not require σ.

So far the confidence interval was based on

Z =
x̄− µ
σ/
√
n
∼ N (0, 1)

Now we will replace σ by the sample standard deviation s, which gives us

t =
x̄− µ
s/
√
n
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this score follows a t-distribution with n−1 degrees of freedom if the sample size is large, or the
population is normally distributed. The t-distribution is described in table VI in the textbook.
The t-distribution is also called ”Student’s t-distribution”. It was introduced by a mathemati-
cian called W.S. Gosset in 1908, who used the pen name ”Student”.

Student’s t distribution
Consider the t-score

t =
x̄− µ
s/
√
n

The distribution of the t-score only depends on one parameter, which is called the degrees of
freedom (df). ”Student” showed that the t-score is t distributed with n− 1 degrees of freedom
(df = n− 1). The appendix provides a table (Table VI) with values from this distribution for
different choices for the df .
The table gives uppertail areas.

t-confidence interval for µ

x̄± tn−1
α/2

s√
n

where tn−1
α/2 is the 1− α/2 percentile of the t-distribution with df = n− 1.

Example:
A scientist is interested in monitoring the daily intake of dairy products in a population.
A sample of n = 50 people let to a sample mean of x̄ = 756g with a standard deviation of
s = 35g.
We will find a 95% confidence interval for µ =the mean daily intake of dairy products in this
population.
α = 0.05, so α/2 = 0.025 (upper tail area needed for finding the percentile in table VI),
df = n−1 = 49, from table VI find t40

(0.975) = 2.021 (use df=40), the largest value that is smaller
than the true df.

756± 2.021

(
35√
50

)
→ 756± 10.002→ [745.998, 766.002]

We are 95% confident that the mean daily intake of dairy products in this population falls
between 746g and 766g.
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2 Statistical Tests of Hypotheses

Previously population characteristics were described, now we will be checking if claims about
the population characteristics are true, or plausible to a given degree,
Since this is statistics and decisions about the population are based on samples, we might make
errors when making decisions. You will learn how to control the probabilities to make errors.

A hypothesis test is a method for using sample data to decide between two competing claims
or hypotheses about a population characteristic.

Example:

p ≤ 0.5 vs. p > 0.5

µ = 100 vs. µ 6= 100

Definition:

The null hypothesis H0 is a claim about a population characteristic. ( We will try to
disprove this hypothesis with the help of sample data)

The alternative hypothesis Ha is the competing claim and logical compliment of H0.
(When we can disprove H0, then Ha must be correct).

In testing H0 vs. Ha:

� H0 will be rejected only if the evidence from the sample strongly suggests that H0 is false.

� Otherwise H0 will not be rejected, and we will state that we could not find evidence
against the claim.

So there are two possible conclusions:

� reject H0 (accept Ha)

� do not reject H0

Note that these decisions are not symmetric, there is no way you can say you
accept H0.

Remark:
Hypotheses should be the logical compliment of each other.
Common choices of hypotheses are

� Two-tailed Test
H0: population characteristic = specific value versus
Ha: population characteristic 6= specific value

� Upper-tailed Test
H0: population characteristic ≤ specific value versus
Ha: population characteristic > specific value
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� Lower-tailed Test
H0: population characteristic ≥ specific value versus
Ha: population characteristic < specific value

In the text book they always choose ”H0: population characteristic = specific value”, which
they argue is equivalent to the other null hypotheses. The decision would be the same but not
the underlying logic.

Examples:

� H0: p = 0.25 versus Ha: p 6= 0.25

� H0: µ ≥ 100 versus Ha: µ < 100

� We can not test H0: µ ≤ 100 versus Ha: µ > 150

Be careful when choosing hypotheses, because a statistical test can only support the alternative
hypothesis, by rejecting H0.

Is H0 not being rejected doesn’t mean strong support for H0, but lack of strong
evidence against H0.

Example:
A company is advertising that the average lifetime of their light bulbs is 1000 hours. You might
question this, and want to show that in fact the lifetime is shorter.

You would test H0: µ ≥ 1000 versus Ha: µ < 1000.
Rejection of H0 would then support your claim. However, nonrejection of H0 doesn’t necessarily
provide strong support for the advertised claim.

The way the decisions are made, the scientist will choose Ha to contain the claim he wants to
prove.

How to make the decision (reject H0, or do not reject H0)

The decision to reject, or not to reject H0 is based on information contained in a sample drawn
from the population of interest. This information will be given in form of

� the test statistic (a number that measures, if the sample data is in accordance with H0),
or

� the P-value (the probability for observing the value of the test statistic, if H0 is true)
Assuming that H0 is true the P-value measures how likely it is to observe such data, as
those found in the sample.

If the P-value is small, this indicates that the assumption, that H0 is true, is (probably)
wrong. Is the P-value not small, this indicates that the sample does not provide evidence
against H0.

� use the test statistic or the P-value to make a decision.
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Example:
Do students learn statistics online as well as face-to-face?
A standardized test shows has been built such that students who are taught face-to-face score
on average 100 on this test with a standard deviation of σ = 15
A random sample of 49 students from an online statistics course has taken the standardized
test and they scored on average x̄ = 96. Do these data indicate that the mean performance of
online students (population) score lower on the standardized test?
Let µ be the mean score of online students on this test.
The we want to decide between the following hypotheses
H0 : µ ≥ 100 versus Ha : µ < 100.
The sample mean from 49 students is smaller than 100, but is this enough evidence to conclude
that this is true in general (for the population)? Or can this be explained by the sampling
variability?
To find out, we calculate the test statistic, that will “compare” the sample value x̄ with the
value from thenull hypothesis µ0 = 100.

z =
x̄− µ0

σ/
√
n

=
96− 100

15/
√

49
= −1.8667

Is this value indicating that a mean of 96 in a sample of 49 is unlikely to occur if mu ≥ 100?
The P-value will give the answer!

P− value = P (z ≤ −1.8667) (probability statement)

≈ 0.0301 (NormalTable)

If H0 is true, i.e. students learning statistics online score on average at least as high as face-to-
face students, then only 3% of samples of size 49 would on average score 96.
Since this is a very small chance we will probably decide to reject H0, and conclude that online
students do NOT learn as much as face-to-face students.

(I made the numbers up, and the question remains open!!!!)

The decision would be easy if the P-value equals 0, the question remains for which P-values
should the null hypothesis be rejected?
In order to answer this question have a look at the different types of errors that may occur
while testing.

2.1 Errors in Hypothesis Testing

As there are in criminal trials, there are two different types of errors you can make in statistical
testing:
In a trial the jury might convict an innocent person, and the other error is to set a guilty person
free.
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Definition:

type I error – the error of rejecting H0 even though H0 is true

type II error – the error of failing to reject H0 even though H0 is false

Truth

H0 is true H0 is false

reject H0 type I error OK

Test

do not reject H0 OK type II error

The only way to guarantee that neither type of error will occur is to make such decisions on
the basis of a census of the entire population. The risk of error is introduced when we try to
make an inference on a sample.

Definition:
The probability of a type I error is denoted by α and is called the level of significance of the
test.
The probability of a type II error is denoted by β.

We would like to ensure with the choice of the method, telling us how to make a decision, that
both error probabilities are small.
But a mathematical analysis shows that how ever we are making the decision between H0 and
Ha the error probabilities behave like a seesaw. When we force one to be small the other goes
up.
Due to this relationship between the error probabilities, one had to choose to control one and
let the other go. It was decided to make sure with the choice for a hypothesis that the P(error
of type I) will be be small.

Remark: After assessing the consequences of type I and type II errors identify the largest α
that is tolerable for the problem. Don’t use a too small level of significance, because the smaller
α the greater β.

Decision Rule: A decision as to whether H0 should be rejected results now from comparing
the P-value to the chosen α.

� H0 should be rejected if P-value ≤ α.

� H0 should not be rejected if P-value > α.
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Example:
A drug is proposed to lengthen the survival time after a specific cancer treatment.
To show the efficacy of the new drug a study has to be designed to test the following hypotheses
for µ the mean survival time under the new treatment.

H0 : µ ≤ mean survival time without new treatment
versus

Ha : µ > mean survival time without new treatment

An error of type I would mean to conclude the drug is lengthening the survival time, even
though this is not the case.

An error of type II would mean to conclude the drug not efficient even though it is.
The scientist doing the study, wants to make sure, that this drug is only used if it is really
efficient, so she has to limit the probability for the error of type I. she chooses α = 0.01.

2.2 A Large Sample Test for a Population Mean, when σ is known

The Test

1. Hypotheses:

� two tailed: H0 : µ = µ0 versus Ha : µ 6= µ0

� lower tailed: H0 : µ ≥ µ0 versus Ha : µ < µ0

� upper tailed: H0 : µ ≤ µ0 versus Ha : µ > µ0

Choose α.

2. Assumption: (1) The data represents a random sample, (2) the sample size is large OR
the data origins from a normal population, and (3) σ is known.

3. Test statistic: z0 =
x̄− µ0

σ/
√
n

estimated by z0 ≈
x̄− µ0

s/
√
n

4. P-value/Rejection Region: – to make a decision you only need one of the two

Test type P-value Rejection Region

Upper tail P (z > z0) z0 > zα

Lower tail P (z < z0) z0 < −zα

Two tail 2 · P (z > abs(z0)) abs(z0) > zα/2
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5. Decision:
If p − value ≤ α or equivalently the value of the test statistic falls into the rejection
region, then reject H0.

If p − value > α or equivalently the value of the test statistic does not fall into the
rejection region, then do not reject H0.

6. Context: Put the result into context.

At significance level of α the data provide/do not provide sufficient evidence that H0 is
wrong.

� provide = test is significant, i.e. H0 is rejected

� do not provide = test is not significant, i.e. H0 is not rejected

� declare what it means that H0 is wrong

Example: Assume you have a random sample with n = 50, x̄ = 871 and σ = 21.
Test at a significance level of α = 0.05 the hypotheses:

1. Hypotheses/α:

H0 : µ = 880 versus Ha : µ 6= 880, α = 0.05

– two-tailed with µ0 = 880

2. Assumptions: (1) Random sample (stated above), (3) we know σ, and (2)we find that
the sample size is large.

3. Test statistic: z0 ≈
x̄− µ0

s/
√
n

=
871− 880

21/
√

50
= −3.03

4. Rejection Region/Pvalue:(for illustration we do both, but we only need one or the other
(your choice))

Since this is a two-tailed test:

Rejection Region: Using α = 0.05 the rejection region is equal to abs(z0) > zα/2 = 1.96.
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P-value: p-value= 2 · P (z > abs(z0)) = 2 · P (z > 3.03) = 2 · (1− 0.9988) = 0.0024, using
the Normal Table.

5. Decision:

Rejection Region: It is abs(z0) = abs(3.03) = 3.03 > 1.96, reject H0

P-value: p-value= 0.0024 < 0.05 = α, reject H0

(same decision using both approaches, as we should have expected, they always lead to
the same decision, that is why we only need one)

6. At significance level of 5% the data provide sufficient evidence that µ 6= 880.

Definition:
The p-value of a statistical test is the probability to observe the value of the test statistic (or
one more extreme) if in fact H0 is true.
When you look as the test statistic as representing the sample data, one can also say that the
P-value measures how like the sample in front of us would have occurred if H0 were true.

Decision Rule:

1. Find the Rejection Region: If the value of the test statistic falls into this region, reject
H0.

or

2. Find the p-value: If p− value ≤ α holds, reject H0.

The assumption, that we know σ is very strong, since we already assume that we do not know µ.
How come we do not know the mean but the standard deviation for the population of interest?
For this reason we need a different tool, based on the t-distribution.

2.3 A test for a mean µ, when σ is unknown

The test introduces in the section above is based on the z-score, which uses the population
standard deviation σ. In most situations σ is unknown and has to be replaced by the sample
standard deviation s. Resulting in a procedure that then is only approximate (does not give
the true error probability).

Student’s t distribution
Consider the t-score

t =
x̄− µ
s/
√
n

is t-distributed withdf = n − 1, if the sample is large or the population follows a normal
distribution.
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The distribution of the t-score only depends on one parameter, which is called the degrees of
freedom (df). ”Student” showed that the t-score is t distributed with n− 1 degrees of freedom
(df = n− 1). The appendix provides a table (Table VI) with values from this distribution for
different choices for the df .

t-Test for a Population Mean µ

1. Hypotheses:

Test type

Upper tail H0 : µ ≤ µ0 versus Ha : µ > µ0

Lower tail H0 : µ ≥ µ0 versus Ha : µ < µ0

Two tail H0 : µ = µ0 versus Ha : µ 6= µ0

Choose α.

2. Assumption: The sample is a random sample and the population has a normal distri-
bution or the sample is large.

3. Test statistic:

t0 =
x̄− µ0

s/
√
n

with df = n− 1 degrees of freedom.

4. P-value and Rejection Region:

Test type P-value Rejection Region

Upper tail P (t > t0) t0 > tα

Lower tail P (t < t0) t0 < −tα

Two tail 2 · P (t > abs(t0)) abs(t0) > tα/2
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5. Decision:

If p-value≤ α then reject H0

If p-value> α then do not reject H0

Or:
If the value of the test statistic falls into the rejection region, then reject H0.
If the value of the test statistic does not fall into the rejection region, then do not reject
H0.

6. Context

(1− α) t-Confidence Interval for a Population Mean µ

x̄± tn−1
α/2

s√
n

where tn−1
α/2 is the (α/2) critical value of a t-distribution with df = n− 1.

Comparing with the z-interval that changes is that you will have to use the critical value of the
t-distribution (table VI) and you may use the sample standard deviation instead of pretending
you know σ.

Example: In recent decades, the mean weight of human males, aged 18 to less than 75, has
been 78.1 kg with a standard deviation of 13.5 kg.
In a study wether weights are changing, a researcher samples 40 males in that age group and
obtains a mean of 82.3 kg with a standard deviation of 15.7 kg.
At significance level of 5% can the researcher conclude that the mean weight has increased?
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1. H0 : µ ≤ 78.1 versus Ha : µ > 78.1, where µ is the mean weight of males aged 18 to 75.
α = 0.05.

2. The sample size is large enough, and we will assume that the participants were randomly
chosen.

3.

t0 =
82.3− 78.1

15.7/
√

40
= 1.69, df = 39

4. This is an upper tail test:

P-value: p-value= P (t > t0 = 1.69), the upper tail probability. Using the t-table use
df = 39.
Observe that 1.69 falls between 1.685 and 2.023, giving that: 0.025 <p-value< 0.05 (from
the column labels).

Rejection Region: The rejection region is in the upper tail (upper tail test), with t39
α =

1.685, i.e. t0 > 1.685.

5. P-value approach: Since the p-value is less than α = 0.05, do reject H0.

Or Rejection Region approach: t0 = 1.69 > 1.685, and falls into the rejection region, so
reject H0.

6. At significance level of 5% that data do provide sufficient evidence that the mean weight
of males aged between 18 and 75 increased lately.

Estimate the mean weight of human males aged 10 to 75 based on the sample with a 95%
confidence interval

x̄± tn−1
α/2

s√
n

n = 40, x̄ = 82.3, s = 15.7, α = 0.05, α/2 = 0.025, df = 39, from table using df=30 t0.025 = 2.023

82.3± 2.023
15.7√

40
↔ 82.3± 5.069 ↔ [77.231; 87.369]
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Based on the sample data we are 95% confident that the mean weight of males from the
population falls somewhere between 77.231kg and 87.369kg.

Example:
An industrial plant has to demonstrate that they in compliance with the law and provide
evidence that they discharge on average less than 1000 liters of waste water per hour. They
sample 25 hours in a week, and observe that on average they discharge x̄ = 950l/h with a
standard deviation of s = 100l/h.
Do the data provide sufficient evidence that they discharge less than 1000l of waste water per
hour?

1. H0 : µ ≥ 1000 versus Ha : µ < 1000, where µ is the mean amount of waste water
discharged per hour. Choose α = 0.05.

2. They randomly chose the times (random sample), and know from previous experiments
that they can assume the discharge to be normally distributed.

3.

t0 =
950− 1000

100/
√

25
=
−50

20
= −2.5, df = 19

4. This is a lower tail test:

P-value: p-value= P (t < t0 = −2.5) = P (t > 2.5), the lower tail probability (using
symmetry gives the upper tail probability). According to the t-table using df = 19 we
observe that 2.5 falls between 2.093 and 2.539, giving that: 0.010 <p-value< 0.025 (from
the column labels).

Rejection Region: The rejection region is in the lower tail (lower tail test), with t19
α =

1.729, i.e. t0 < −1.729.

5. P-value approach: Since the p-value < 0.025 < 0.05 = α, and therefore less than α = 0.05,
reject H0.

Or Rejection Region approach: t0 = −2.5 < −1.729, and falls into the rejection region,
reject H0.

19



6. At significance level of 5% that data provide sufficient evidence that the mean amount of
waste water discharged per hour falls below 1000l.

Demonstration:
If we would have used the data in the previous example to test if the data provide sufficient
evidence that the mean amount of waste water discharged per hour is different from 1000l.
We should have done the following test

1. H0 : µ = 1000 versus Ha : µ 6= 1000 Choose α = 0.05.

2. (no change) They randomly chose the times (random sample), and know from previous
experiments that they can assume the discharge to be normally distributed.

3. (no change)

t0 =
950− 1000

100/
√

25
=
−50

20
= −2.5, df = 19

4. This is a 2-tailed test:

P-value: p-value= 2 × P (t > abs(t0) = 2.5) = 2 × P (t > 2.5), two times the upper tail
probability for the absolute value.

According to the t-table using df = 19 we observe that 2.5 falls between 2.093 and 2.539,
giving for half the P-value: 0.010 <p-value/2< 0.025 (from the column labels), and
therefore 0.020 <p-value< 0.05.

Rejection Region: The rejection region is both tails (2-tailed test), with t19
α/2 = 2.093, i.e.

abs(t0) > 2.093.

5. P-value approach: Since the p-value < 0.05 = α, i.e. less than α = 0.05, reject H0.

Or Rejection Region approach: abs(t0) = 2.5 > 2.093, and falls into the rejection region,
reject H0.

6. At significance level of 5% that data provide sufficient evidence that the mean amount of
waste water discharged per hour is different from 1000l.
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Wording, when a test results in not rejecting H0:
Assume that in the last example we would not have rejected H0 : µ < 1000, then we would
have come to the following conclusion:
At significance level of 5% the data do not provide sufficient evidence that the mean amount
of waste water falls below 1000l per hour.
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3 Comparison of Two Populations

In this section we will study how to use inferential statistics for comparing two populations.
Again we will consider being interested in a mean of a population and in the proportion of a
population.

3.1 Inference for the difference between two population means, µ1−
µ2

Consider a study for comparing the effect of two drugs on the blood pressure. If µ1 and µ2 are
the mean changes in the blood pressure for drug one and two, respectively, then here one might
want to compare the two means based on sample data from the two populations including
people being treated with one or the other drug. This would call for a method using the
information in the two samples and estimating and testing properties for the two means.

The sample data will give us:

Sample 1 Sample 2

sample size n1 n2

mean x̄1 x̄2

s.d. s1 s2

When comparing two population means we need to distinguish the following two situations
describing the type of samples we will base the comparison on.

1. independent samples – example: height of males and females, where the samples of males
and females were independently obtained.

The measurements from the two samples under investigation are not associated with each
other, they are independent.

2. paired samples – example: blood pressure measured in the morning and evening in the
same group of people

The measurements from two samples are connected. For every measurement in sample
one there is a corresponding measurement in sample two (in the example: for every
individual, their measurement in sample one corresponds to their measurement in sample
two)

3.1.1 t-Procedure for Two Paired Samples

In order to control extraneous factors in some studies paired samples are used. In this case
for every individual in the sample from population 1 you find a matching individual from
population 2. And the decision is made based on the resulting sample data. In these cases the
sample sizes are always the same, n = n1 = n2.

Example:
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� Compare the resting pulse and pulse after exercise.

To control for all other influences, take two measurements for every individual resulting
in two samples (before and after exercise).

To compare the two population mean we use µd = µ1 − µ2, the difference between the two
population means, as parameter of interest. This one number can tell us everything:

� µd = µ1 − µ2 = 0 means µ1 = µ2

� µd = µ1 − µ2 < 0 means µ1 < µ2

� µd = µ1 − µ2 > 0 means µ1 > µ2

In case of paired sample, to conduct statistical inference about µd the differences of the paired
observations are used

sample 1 value− sample 2 value

are used. Which then will create one sample of size n of measurements of pairwise differences.

For example consider paired samples of size 5:

x1 x2 x1 − x2

5 9 -4

7 3 4

4 4 0

9 7 2

7 9 -2

x̄d and sd denote the sample mean and sample standard deviation for those differences, respec-
tively.

For the distribution of X̄d, we get equivalent results as seen in the Central Limit Theorem for
X̄:

1. µX̄d = µ1 − µ2, X̄d is an unbiased estimator for µ1 − µ2

2. σX̄d = σd/
√
n, where σd is the population standard deviations of the pairwise differences.

3. If n is large than X̄d is normally distributed.
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Resulting in the following t-score standardizing X̄d:

t =
X̄d − (µ1 − µ2)

sd/
√
n

is t-distributed with df = n− 1, if either n is large or the population of pairwise differences is
normally distributed.

These facts results to the following

Paired t-Test for Comparing Two Population Means

1. Hypotheses:

Test type

Upper tail H0 : µd ≤ d0 ⇔ µ1 − µ2 ≤ d0 versus Ha : µd > d0 ⇔ µ1 − µ2 > d0

Lower tail H0 : µd ≥ d0 ⇔ µ1 − µ2 ≥ d0 versus Ha : µd < d0 ⇔ µ1 − µ2 < d0

Two tail H0 : µd = d0 ⇔ µ1 − µ2 = d0 versus Ha : µd 6= d0 ⇔ µ1 − µ2 6= d0

Choose α.

2. Assumption: Random sample of differences, and n is large or the population distribution
of differences is approximately normal.

3. Test statistic:

t0 =
x̄d − d0

sd√
n

with n− 1 df.

4. P-value/Rejection Region:

Test type P-value Rejection Region

Upper tail P (t > t0) t0 > tα

Lower tail P (t < t0) t0 < −tα

Two tail 2 · P (t > abs(t0)) abs(t0) > tα/2
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5. Decision:

Either:
If the P-value≤ α reject H0

If the P-value> α do not reject H0

Or:
If t0 falls into the Rejection Region reject H0

If t0 falls outside the Rejection Region do not reject H0

6. Context:

d0 is the value we are comparing the difference against. Very often d0 = 0 is used.

� Do the data indicate that the mean before is greater than the mean after?

For µd = µbefore − µafter test H0 : µd ≤ 0 versus Ha : µd > 0 (d0 = 0)

� Do the data indicate that there is a difference between the two means?

For µd = µbefore − µafter test H0 : µd = 0 versus Ha : µd 6= 0 (d0 = 0)

� But: Do the data indicate that the difference between the two means is less than 20? (or
the mean before exceeds the mean after is less than 20?)

For µd = µbefore − µafter test H0 : µd ≥ 20 versus Ha : µd < 20 (d0 = 20)

Beside testing for difference of the means it is always insightful to estimate µd = µ1 − µ2 with
a confidence interval:

Paired t-Confidence Interval for µ1 − µ2
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Assumption: n is large or the population distribution of differences is approximately
normal.

The (1− α) Confidence Interval for µd:

x̄d ± tn−1
(α/2)

sd√
n

and tn−1
(α/2) is the critical value of the t-distribution with n − 1 degrees of freedom (Table

4).

Example:
The effect of exercise on the amount of lactic acid in the blood was examined.
Blood lactate levels were measured in eight males before and after playing three games of
racquetball.

Player Before After Difference

1 13 18 -5

2 20 37 -17

3 17 40 -23

4 13 35 -22

5 13 30 -17

6 16 20 -4

7 15 33 -18

8 16 19 -3

This data results in x̄d = −13.63, sd = 8.28, n = 8
Lets test whether these data indicate a significant increase in mean lactate levels at a significance
level of 0.05. That is

1.
H0 : µb − µa ≥ 0 (µd ≥ 0) vs. Ha : µb − µa < 0 (µd < 0)

.

where µb (µa) is the mean lactate level before (after) three games of racquetball.

α = 0.05.
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2. Assumption: The sample is a random sample and it is appropriate to assume that the
difference in lactate level is normally distributed.

3. Test statistic: with d0 = 0

t =
x̄d − d0

sd√
n

=
−13.63

8.28√
8

= −4.65597

with df = n− 1 = 7.

4. P-value:
Since we perform a lower tail test the P-value=P (t < t0) = P (t > abs(t0)) = P (t >
4.65597).

Use table VI from the text book. Focus on row with df = 7 find the 2 numbers that
enclose abs(t0) = 4.656.

Here: 3.499< 4.656 < 4.785. Then the P-value falls between the two upper tail probabil-
ities corresponding to these values.

Here: 0.001 <P-value< 0.005.

5. Decision: Since P-value< 0.005 < α = 0.05, we reject H0 and accept Ha.

6. Result: The data provide sufficient evidence that the lactate level after three games of
racquet ball is higher than before at significance level of 0.05.

Let us find an estimate (95% Confidence interval) for the increase in the mean lactate level
through three games of racquetball in males.

x̄d ± tn−1
(α/2)

sd√
n

= −13.63± 2.365
8.28√

8
= −13.63± 6.938

or (−20.568;−6.696). tn−1
(α/2) = t70.025 = 2.365.

Complete Interpretation:
Based on the sample data we can be 95 % confident that the mean increase in lactate level is
between 6.692 and 20.568 after three racquetball games. Since zero does not fall within the
confidence interval we are 95% confident that the mean lactate levels before and after the games
are not the same. Finding that the confidence interval falls entirely below 0, we can conclude
the mean before is significantly smaller than the lactate level after.
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3.1.2 Independent Random Samples

In this section we will see how to perform statistical tests and calculate confidence intervals for
the difference between two means, µ1 − µ2, based on two independent samples.

The point estimator for µ1 − µ2 that seems an intuitive choice is the difference between the
sample means, X̄1 − X̄2.
In order to do inferential statistics using this difference we have to investigate the distribution
of this statistic.

Sample Distribution of X̄1 − X̄2 from two independent samples.

� For the mean: µX̄1−x̄2 = µX̄1
− µX̄2

= µ1 − µ2, so that X̄1 − X̄2 is an unbiased estimator
for µ1 − µ2.

� For the variance:

σ2
X̄1−X̄2

= σ2
X̄1

+ σ2
X̄2

=
σ2

1

n1

+
σ2

2

n2

� For the standard deviation:

σX̄1−X̄2
=

√
σ2

1

n1

+
σ2

2

n2

� If n1 and n2 are both large or both populations are normal distributed, then is the
sampling distribution of X̄1 − X̄2 (approximately) normal.

The t-statistic

t =
X̄1 − X̄2 − (µ1 − µ2)√

s21
n1

+
s22
n2
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with

df =

(
s21
n1

+
s22
n2

)2

(
(s21/n1)2

n1−1
+

(s22/n2)2

n2−1

)
For hand calculations this can be approximated by

df = min(n1 − 1, n2 − 1)

min(n1 − 1, n2 − 1) is the smaller of the two numbers n1 − 1 and n2 − 1.
This is all the information we need to put together a

Two–sample t-Test for Comparing Two Population Means

1. Hypotheses

Test type

Upper tail H0 : µ1 − µ2 ≤ d0 versus Ha : µ1 − µ2 > d0

Lower tail H0 : µ1 − µ2 ≥ d0 versus Ha : µ1 − µ2 < d0

Two tail H0 : µ1 − µ2 = d0 versus Ha : µ1 − µ2 6= d0

Choose α

2. Assumption: random samples, n1 and n2 are large or both populations are approxi-
mately normal distributed.

3. Test statistic:

t0 =
x̄1 − x̄2 − d0√

s21
n1

+
s22
n2

with df =

(
s21
n1

+
s22
n2

)2

(
(s21/n1)2

n1−1
+

(s22/n2)2

n2−1

)

and for hand calculations (exams) use df = min(n1 − 1, n2 − 1)

4. P-value/Rejection Region:

Test type P-value Rejection region

Upper tail P (t > t0) t0 > tα

Lower tail P (t < t0) t0 < −tα

Two tail 2 · P (t > abs(t0)) abs(t0) > tα/2
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5. Decision

Either:
If the P-value≤ α reject H0

If the P-value> α do not reject H0

Or:
If t0 falls into the Rejection Region reject H0

If t0 falls outside the Rejection Region do not reject H0

6. Context

Example:
A company wants to show that a vitamin supplement decreases the recover time from the
common cold. They selected randomly 70 adults with a cold. 35 of those were randomly
selected to receive the vitamin supplement. The data on the recover time for both samples is
shown below.

population 1 2

no vitamin vitamin

sample size 35 35

sample mean 6.9 5.8

sample standard deviation 2.9 1.2

Now test the claim of the company: H0 : µ1 − µ2 ≤ 0 versus Ha : µ1 − µ2 > 0 at a significance
level of α=0.05.

Assumption: We are using random samples of patients and the sample sizes are large
enough.

Test statistic: with d0 = 0

t0 =
x̄1 − x̄2 − d0√

s21
n1

+
s22
n2

=
6.9− 5.8√
2.92

35
+ 1.22

35

=
1.1

0.53
= 2.07

and df = 66.28 (using the long formula) and df = min(35 − 1, 35 − 1) = 34 (using the
quick formula)

df =

(
s21
n1

+
s22
n2

)2

(
(s21/n1)2

n1−1
+

(s22/n2)2

n2−1

) =

(
2.92

35
+ 1.22

35

)2(
(2.92/35)2

34
+ (1.22/35)2

34

) =
0.0784

0.001698 + 0.00004978
= 44.856

Rejection Region: Since this is an upper tail test the rejection region is t0 > tα for a
t-distribution with 44 df and α = 0.05. From the t-Table we get t40.054 = 1.680 .
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Decision: Since the value of the test statistic falls into the rejection region, we reject
H0 and accept Ha.

P-value approach: We found t0 = 2.07 for df=44, we find that t0 falls between
t44
0.025 = 2.015 and t44

0.01 = 2.414, so the p-value falls between 0.01 and 0.025 and

p− value ≤ 0.025 < 0.05 = α

so the p-value is less than α = 0.05. The test is significant at significance level 0.05, we
can reject H0.

Context: At significance level of 5% the data provide sufficient evidence that the mean
recovery time taking the vitamins is shorter than the mean recovery time taking the
placebo.

Use a confidence interval to estimate the difference in the mean recovery time for patients
taking placebo and those taking vitamins.

Two–sample t-Confidence Interval for Comparing Two Population Means

Assumption: n1 and n2 are large or both populations are approximately normally dis-
tributed.

The (1− α) Confidence Interval for µ1 − µ2:

(x̄1 − x̄2)± tdfα/2

√
s2

1

n1

+
s2

2

n2

with

df =

(
s21
n1

+
s22
n2

)2

(
(s21/n1)2

n1−1
+

(s22/n2)2

n2−1

)
and for hand calculations (exams) use df = min(n1 − 1, n2 − 1)

and tdf(α/2) is the critical value of the t-distribution with the given number of degrees of
freedom (Table D).

Continue Example:
Calculate a 95% Confidence Interval to estimate the difference in recovery time µ1 − µ2.
The degrees of freedom are 66, from the table get tdf(α/2) = t44

(0.025) = 2.015

x̄1 − x̄2 ± tdf(α/2)

√
s2

1

n1

+
s2

2

n2

6.9− 5.8± 2.015 · 0.53

1.1± 1.068

or (0.032 ; 2.168). The 95% confidence interval lies entirely above 0. So that 0 is with a
confidence of 95% less than µ1 − µ2. We can state at confidence level of 0.95 that the mean
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recovery time using placebo is greater than the mean recovery time using vitamins. But the
time gained might be small as 0.032 days= 0.768 hours, or about 45 minutes. But it is also
possible that one gains on average more than 2 days (now we are talking). Unfortunately we
do not know which one.
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